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Microarray data has a high dimensional data structure that makes statistical inference drawn from this type of data challenging. 
Since current statistical methods are generally for “small p and large n”, these methods can be insufficient to draw valid conclusions 
for microarray data. Nevertheless, some of these methods, such as ANOVA (F test), are still widely used. One of the assumptions of 
the classical F test is that populations (genes) are assumed to be independent. This assumption is obviously violated in microarray 
experiments because gene-gene interactions can naturally occur. In this paper, we use an effective “column” size idea to take correlations 
among genes into account to modify the classical F test. We consider various magnitudes of correlation among genes in Monte Carlo 
simulation studies. We compare the proposed test (F -MOD) with the classical F test and multivariate Hotelling’s T2 test through validity 
and power analyses. We also demonstrate the proposed test with real type 2 diabetes mellitus gene expression data, which was obtained 
from the Gene Expression Omnibus (GEO) database with accession number GSE25724.

Abstract

Completion of the human genome sequence allows researchers to study expression of 20,000-30,000 genes in a single assay. There 
are three types of platforms: short oligonucleotide (25-30 base), long oligonucleotide (50-80 base), and cDNA. However, the most 
two common platform are based on collections of cDNA clones [1] or short (25 base) oligonucleotides synthesized in situ by 
photolithographic methods [2]. Although microarrays are the most extensively used technology for studying gene expression, 
it has a high dimensional data structure that makes statistical inference from this type of data challenging [3]. Several methods 
such as clustering and classification have been used to identify groups of genes that share similar functions [4,5]. However, while 
clustering and classification are useful techniques to search for similar genes, these techniques do not answer the question of which 
genes are differentially expressed under different conditions (e.g. cancer cells versus normal cells). The answer to the question 
requires hypothesis testing with null hypothesis of no difference in the means of gene expressions under different conditions. 
Various statistical tests have been proposed involving fold change, linear models, as well as Bayesian methods [6–8]; however, 
progress has been slow in adopting these methods in microarray analysis. Moreover, all of these methods have the common 
characteristic of being univariate methods.
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A common characteristic of high dimensional data is that it has high dimension (p), and relatively small sample size (n). This 
kind of data structure is called “large p and small n”. Besides having high dimensional data, microarray data also have correlation 
structure [9]. Most of the current methods either ignore high dimensional data structure or fail to efficiently take correlations 
among genes into account. Multivariate analysis can take correlations among genes into account by analyzing genes jointly. 
Consequently, multivariate analysis methods have recently being used in microrray data [10,11]. However, these methods are not 
straightforward, and most importantly ignore the multidimensional structure of the gene expression data.

Hotelling’s T2 test is one of the multivariate analysis methods that takes correlations among genes into account to identify 
differentially expressed genes. It has been applied in genome association studies [12], microarray process control [13], and data 
control charts [14]. However, Hotelling’s T2 test does not take high dimensional data structure into account. For example, in a 
comparison of two groups, this test requires an explicit condition on data dimension and sample size: for fixed p, p < n1 + n2 − 1, 
where p is the number of genes, n1 is the sample size of the group 1, and n2 is the sample size of the group 2. Lu, et al. [15] presented 
a new T2 statistic for analyzing microarray data. They used first a multiple forward search algorithm to select a subset of feature 
vectors in a high-dimensional microarray dataset to reduce the dimension (i.e., p) to satisfy the restriction p < n1 + n2 − 1, and then 
they implemented the Hotelling’s T2 test.

Received Date: September 15, 2015 Accepted Date: December 30, 2015 Published Date: January 04, 2016

 Volume 1 | Issue 1  
 Journal of Biostatistics and Biometric Applications

ISSN: 2455-765X



Annex Publishers | www.annexpublishers.com                    

 
2

 
                             Volume 1 | Issue 1

Moreover, as an alternative test to Hotelling’s T2, Chen, et al. [16] proposed a two-sample test for the means of high-dimensional 
data.

In this paper, we present a different approach proposed in Lu, et al. [15]. Our approach is more general and practical than that 
of in [15], and moreover does not implement Hotelling’s T2 test but the simple classical F test. The proposed modified F test is 
denoted by F -MOD. We use an effective sample size idea to take correlation among genes into account [17-19]. The effective 
sample size formula was originally proposed by Clifford, et al. [20], and was improved for small sample sizes by Dutilleul, et al. 
(1993) [21]. Also, the same effective sample size formula was used in modified F tests to assess multiple correlation between one 
spatial process and several others [22], and to assess correlation between two time series [23]. We implement the same effective 
sample size formula described in [21] to compute effective column size not effective sample size. Henceforth, we introduce a new 
nomenclature term “effective column size”. To adopt the formula in [21], we consider the same structure of the design matrix (1) 
in the Methods section.

A s ingle multivariate observation is the collection of measurements on p different variables (genes) taken from the same trial 
(array). If n observations have been obtained, the entire data set can be represented in an n × p matrix

Methods

An another statistical technique for finding significant genes in a set of microarray experiments is Significance Analysis of 
Microarray (SAM) proposed by Tusher, et al. [24]. The SAM uses repeated permutations of the data to determine if the expression 
of any genes are significantly related to the response. It uses a set of gene-specific t tests. Since, the classical F , Hotellings T2, and 
F -MOD tests use global F tests and not individual t tests as in SAM, we do not consider the SAM as one of the methods to be 
compared in this paper. Also, the goal of SAM is to handle gene-specific fluctuations by considering a statistic based on the ratio of 
change in gene expression to standard deviation in the data for that gene. However, in this paper, our goal is to handle gene-gene 
interactions and not in gene-specific fluctuations, which are two different problems to tackle.

The row vector         represents the jth multivariate observation. The matrix X represents p genes each having n observations. Now, 
consider a microarray experiment of n1 and n2 samples from populations 1 and 2, respectively. For example, population 1 can 
represent the disease group, while population 2 can represent the healthy group. Suppose that the expression levels of p genes are 
measured and matrix representations of populations 1 and 2 are defined in (1) as X and Y. The observations on p variables can be 
arranged as follows:

The remainder of the paper is organized as follows. In the Methods section, we describe Hotelling’s T2, classical F, and F -MOD 
tests, and in the Results section we outline Monte Carlo simulation studies, present its findings, and analyze gene expression data 
of type 2 diabetes mellitus. Finally, we draw conclusions in the Discussion section.

Comparing Mean Vectors from Two Populations

(1)

Our goal in this paper is to only make inferences about the differences of the vector mean of the populations. That is, we want to 
know if µ1 = µ2, or equivalently if µ1 − µ2 = 0. However, one further can investigate which means are different if the hypothesis of 
µ1 − µ2 = 0 is concluded. We need to make some assumptions to provide answers to these questions. The assumptions are: 

1. The sample                                       is a random sample of n1 from a p-variate population with mean vector µ1 and covariance matrix Σ1.

2. The sample                               is a random sample of n2 from a p-variate population with mean vector µ2 and covariance matrix Σ2.

3. The samples                               are independent of the samples                              .

For large samples, these assumptions are enough to make an inference about µ1 − µ2. However, when the sample sizes n1 and n2 are 
small we need to have the following assumptions as well.

Journal of Biostatistics and Biometric Applications
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1. Both populations are multivariate normal, and

2. Σ1 = Σ2.
The null (H0) and alternative (Ha) hypotheses we are interested are:

                                                                   H0: µ1 − µ2 = 0        versus        Ha : µ1 − µ2 ≠ 0 	        (2)

where µ1 = (µ11, µ12, . . . , µ1p)ʹ is the vector mean expression level of population 1, and µ2 = (µ21, µ22, . . . , µ2p)ʹ is the vector mean 
expression level of population 2. The null and alternative hypotheses can also be rewritten as

                                                                H0 : (µ11 − µ21, µ12 − µ22, . . . , µ1p − µ2p)ʹ = (0, 0, . . . , 0)ʹ 

                                                                Ha : (µ11 − µ21, µ12 − µ22, . . . , µ1p − µ2p)ʹ ≠ (0, 0, . . . , 0)ʹ       (3)

				    or equivalently

					     H0 : µ11 = µ21, µ12 = µ22, . . . , µ1p = µ2p

      					     Ha : at least one µ1i = µ2i, (i = 1, 2, . . . , p)	        (4)

Note that, we test the mean expression of p genes all together not the individual mean expressions in (2) - (4). That is, we consider 
a global test not an individual test.

We consider a microarray experiment composing of n1 samples from population 1 and n2 samples from population 2. Let Xij be the 
expression level for gene j of sample i from population 1, and Ykj be the expression level for gene j of sample k from population 2. 
The expression level vectors for sample i from population 1 can be expressed as Xi = (Xi1, . . . , Xip)ʹ. The mean expression level of 
gene j in population 1 is defined as

Hotelling’s T2 Test

Then, the mean expression level vector for p genes for population 1 is given by

(5)

                                         We can similarly define these expressions for population 2. The pooled variance-covariance matrix of p 
genes for populations 1 and 2 can be written as

where SX and SY are the sample variance covariance matrices of populations 1 and 2. Note that correlation among genesare taken 
into account through sample variance covariance matrices. 
The Hotelling’s T2 test [25] is defined as

(6)

(7)   

By Central Limit Theorem,

(8)

has classical F distribution with p degrees of freedom for the numerator and n1 + n2 − p – 1 degrees of freedom for the denominator. 
This test requires that the degrees of freedoms are positive, that is, it forces the condition p < n1 + n2 − 1. However, this restriction 
makes it almost impossible to implement Hotelling’s T2 test in microarray experiments.

The classical F test compares the means of the columns of X, and assumes that these columns are independent (univariate case). 
In microarray experiment, we want to compare the differences of the p means of X and Y. Since we want to compare multivariate 
(Hotelling’s T2) and univariate (classical F) methods, we adopt the data structure from the multivariate to univariate case by 
considering the observations as the differences of the data matrices X and Y. That is, we compute Xij − Yij , and apply the univariate 
F test on these observations. The F test is defined as

Classical F Test
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where B = n-1(I – n-1J), J is the n × n matrix of ones, and I is the identity matrix.

In this paper, we use equation (11) defined in [21] to compute effective column size to identify differentially expressed genes in 
microarray data. We considered the following steps for F -MOD test in the simulation runs: first, we computed the effective column 
size, p, as in equation (11).
The estimated covariance matrices ΣX and ΣY were computed using the raw data of X and Y, respectively. Second, we replaced p by 
p in the degrees of freedoms of the classical F test defined in (9). Finally, we computed the p-value of the global F test in (9) with 
p − 1 and p(n − 1) degrees of freedoms for the numerator and denominator degrees of freedoms, respectively. Note that, the sample 
size is n1 = n2 = n.

(9)

where MST is the mean square for treatments (genes), and MSE is the mean square for errors. The Fobs in (9) follows an F distribution 
with p − 1 degrees of freedom for the numerator and p(n − 1) degrees of freedom for the denominator, where n1 = n2 = n.

When the assumptions are not satisfied by sample data, there are two general remedies: (1) to transform the data so that the 
assumptions are satisfied, or (2) to develop a modified inferential method in which the assumptions are relaxed at the estimation 
stage, or deviations from the assumptions are taken into account at the testing stage.

F –MOD Test

In linear models, the autocorrelation of errors has an impact on the inefficiency of slope estimators and the invalidity of significance 
levels. When regressors have fixed structure, the only source of autocorrelation comes from errors. However, when regressors 
also have random structures, their autocorrelations along with correlations of errors have an impact on estimation and testing 
[17-19,26,27]. Since the autocovariances of stochastic processes bias the variance of sample correlation coefficients [28], the 
incorporation of effective sample size into modified t-tests were proposed [20,21]. The effective sample size n in [20] was defined as

(10)

where ΣX and ΣY were the estimated covariance matrices of X and Y, respectively. Dutilleul (1993) proposed an improved effective 
sample size for small sample sizes [21]. However, the effective sample sizes prosed in [20] and [21] behave similarly for large sample 
sizes. The effective sample size in [21] was defined as

ˆ

(11)

ˆ

ˆ

ˆ ˆ
ˆ

ˆ

We generated two multivariate normal distributions: MVN(µ1, Σ1) and MVN(µ2, Σ2), each with dimension p (genes). The variance 
covariance matrices are defined as

Results and Discussion
Simulation

where

(12)

ˆ
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where                                    We can similarly define Σ(-ρ) by replacing ρ by (−ρ) in (12).

The matrices Σρ and Σ(−ρ) have dimensions g × g, and the matrices Σ1 = Σ2 have dimensions p × p. The constant term l is cancelled 
out in the computation of the effective column size in (11), hence, it has no effect on the effective column size. However, this term 
is considered to generate the data matrices X and Y with covariance matrices defined in (12).

Actually, the simulation setup has sound basis in methodologies used in analyzing real microarray data. It is common knowledge 
that genes are networked together in pathways. Although, it is true that weak connections between groups may exist, independence 
between groups is a reasonable assumption. Also, within each group, genes are either positively or negatively correlated, and due to 
their relative distance in the regulatory pathway, the further apart two genes, the less correlation between them. These are exactly 
the reasons why we considered the structures of Σ1 and Σ2 defined in (12) for microarray data.

We assumed that both populations have equal sample sizes (i.e., n1 = n2), and there are 10 matrices on the diagonals of Σ1 and Σ2. For 
example, if p = 100 then there are 10 matrices on the diagonal of Σ1 and Σ2 with 10 genes in each matrix (i.e., g = 10). To assess the 
effects of correlation among genes, we took ρ = 0, 0.1, 0.2, . . . , 0.9 as various magnitudes of correlations. We also set the variances 
of each gene at 0.01 (i.e., σ2 = 0.01). Even though the value of σ2 is needed to generate X and Y, it has no effect on the computation 
of the effective column size. Two different significance levels, α = 0.01 and 0.05, were used in validity and power analyses.  

The null hypothesis in validity analysis was set to  µ1 = µ2 |= (0,0,0,.....,0)'(p × p) whereas in power analysis  µ1 ≠ µ2  with

µ1 = (0,0,0,.....,0)'(p × 1) and 

More precisely, the first 2% of the means of the genes were set to 0.5, and the rest were set to 0 in µ2. If 0.02 * p was not an integer 
value, then we used ceiling function in R that takes a single numeric argument a and returns a numeric value containing the 
smallest integers not less than the corresponding elements of a.
The simulation program was written and run in R, which is a free software environment for statistical computing and graphics. 
We ran 10,000 data sets to test the null hypothesis. We computed empirical significance levels (p-values) and powers of the tests to 
draw conclusions about the testing procedures.
Lu, et al. [15], Chen, et al. [16], and SAM [24] methods were not compared in the simulation. The SAM handles gene-specific 
fluctuations by considering a statistic based on the ratio of change in gene expression to standard deviation in the data for that 
gene. However, in this paper, our goal is to handle gene-gene interactions and not gene-specific fluctuations. Also, Lu, et al. [15] 
modified the degrees of freedom in Hotellings T2 test but F -MOD modified the degrees of freedom of the classical F test. Moreover, 
the method of Chen, et al. [16] was not compared because they proposed a two-sample test, and we used a test that modified the 
global F-test.

The strict definition of a testing procedure to be valid at a significance level α is that if the actual p-value, which is the probability of 
rejecting the null hypothesis when in fact the null hypothesis is true, is less than or equal to α. To take variability among generated 
data into account in simulation runs, one may consider the upper limit of the approximate 95% confidence interval for the actual 
p-value. Under binomial distribution model, for α and m simulation runs, the approximate 95% confidence interval is 
α ± 2√α(1 − α)/m. In simulation runs, we took α = 0.01 and 0.05, and m = 10, 000. The upper limits are

Validity and Power Analysis

_________

Therefore, we assessed the validity of the testing procedures based on the strict definition of the validity and the variability 
associated with the data generation. That is, the validity conditions are p-value ≤ 0.012 when α = 0.01, and p-value ≤ 0.054 when 
α = 0.05 in Tables 1 and 2.

In Table 1, we investigated the validit y of the tests at α = 0.01 and 0.05 when p < n1 + n2 − 1. We need this restriction to perform 
the Hotelling’s T2 test, but not the other two tests. Table 1 showed that the classical F test suffered lack of validity when correlations 
among genes were between mild and strong. The Hotelling’s T2 test is known to be not well-defined when p is much greater than 
n because the variance-covariance matrices Σ1 and Σ2 become singular. As a result, Hotelling’s T2 test becomes unstable. This 
phenomena was ascertained in Table 1 when p > 60. Therefore, we suggest not to use Hotelling’s T2 test when p > 60. In contrast, 
the proposed F -MOD test always provided valid tests for any ρ, except only in two cases (p = 50 when α = 0.05 and α = 0.01), which 
might be solely due to variation among data.

We studied the validity of F and F -MOD tests without the restriction p < n1 + n2 − 1 in Table 2. Since F  MOD performed very 
well up to p = 80, we ran simulations for p = 100 and 200 to better understand the performance of the test for larger number of 
genes. Both tests performed similarly as in Table 1. That is, F test was only valid when correlation among genes did not exist or the 
magnitudes of the correlations were very weak. The F -MOD test always provided valid testings, except in one case.
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p = 50, n1 = n2 = 26
                                                                                                                                                       ρ

0.90.80.70.60.50.40.30.20.10Testα

0.1440.1300.1080.0940.0840.0760.0600.0540.0560.049F

0.05 0.0440.0520.0480.0480.0520.0540.0490.0490.0550.049F-MOD

0.0520.0480.0480.0490.0490.0540.0480.0510.0510.049Hotelling’s

0.0870.0630.0480.0380.0290.0190.0130.0120.0110.011F

0.01 0.0090.0110.0110.0130.0110.0110.0090.0110.0110.012F-MOD

0.0090.0090.0090.0110.0120.0090.0120.0110.0110.011Hotelling’s

p = 60, n1 = n2 = 31

0.1670.1360.1230.0950.0810.0680.0610.0530.0490.046F

0.05 0.0450.0460.0520.0470.0460.0490.0490.0480.0490.046F-MOD

0.0510.0500.0480.0480.0520.0510.0460.0490.0520.050Hotelling’s

0.0920.0690.0510.0340.0320.0190.0160.0130.0130.009F

0.01 0.0100.0110.0090.0100.0120.0090.0110.0100.0130.009F-MOD

0.0110.0100.0110.0100.0090.0090.0090.0090.0090.009Hotelling’s

p = 80, n1 = n2 = 41

0.1760.1460.120.1010.0860.0720.0580.0530.0520.051F0.05

0.0450.0470.0480.0490.0490.0490.0460.0470.0500.051F-MOD

0.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Hotelling’s

0.1130.0780.0580.0390.0280.0190.0150.0110.0090.011F0.01

0.0080.0110.0110.0110.0110.0110.0090.0090.0080.011F-MOD

0.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Hotelling’s

Table 1: Validity analysis with restriction p < n1 + n2 − 1, where p is the number of columns (e.g., the number of genes) and n is the number of sample 
size (e.g., the number of individuals.)

p = 100, n1 = n2 = 20
                                                                                                                                                       ρ

0.90.80.70.60.50.40.30.20.10Testα

0.1880.1520.1270.1040.0880.0750.0660.0550.0560.051F
0.05

0.0470.0470.0480.0480.0490.0530.0520.0490.0550.052F-Mod

0.1210.0880.0630.0440.0290.0200.0130.0130.0110.011F
0.01

0.0110.0090.0120.0120.0110.0120.0100.0100.0100.011F-Mod

p = 200, n1 = n2 = 20

0.2130.1750.1350.1140.0990.0720.0640.0550.0530.047F
0.05

0.0450.0480.0490.0480.0500.0480.0500.0490.0520.048F-Mod

0.1470.0980.0670.0500.0330.0220.0150.0130.0100.010F
0.01

0.0100.0100.0110.0110.0120.0100.0100.0100.0090.010F-Mod

Table 2: Validity analysis without restriction p < n1 + n2 − 1, where p is the number of columns (e.g., the number of genes) and n is the number of sample 
size (e.g., the number of individuals.)

Table 3 provided power analysis at α = 0.01 and 0.05 when p < n1 + n2 − 1. Since F test suffered lack of validity when ρ > 0.2, we 
did not analyze the power values in the table; these values were provided only for completeness of the Table. Hence, the power of 
F test should be ignored when ρ > 0.2. While Hotelling’s T2 test provided better power when correlations among genes were not 
too strong, the power decreased as correlations among genes got stronger. The Hotelling’s T2 test actually became powerless as p 
increased. This is not an unusual observation because it is known that even when p ≤ n, the Hotelling’s T2 test perform poorly if p 
is nearly as large as n. The performance of the Hotelling’s T2 test under p, n → ∞ with p/n → 1 – Є was studied in [29], which they 
showed that the asymptotic power of the test suffered for small values of Є > 0. A number of improvements to give better power 
on the Hotelling’s T2 test in high-dimensional data have been proposed in [16, 29-31]. It was interesting to observe that Hotelling’s 
T2 test was more powerful when α = 0.05 than when α = 0.01. Its powers were more than 88.5% when α = 0.05, but not more than 
35.4% when α = 0.01. In contrast, the F -MOD always provided powers at 100%.

We did not provide a table for power analysis when the restriction p < n1 + n2 − 1 was because held because it provided similar 
results to those in Table 3.
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p = 50, n1 = n2 = 26
                                                                                                                                                       ρ

0.90.80.70.60.50.40.30.20.10Testα

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F

0.05 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.8880.8900.8850.8880.8950.8940.8930.8910.8940.893Hotelling’s

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F

0.01 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.2520.2520.2490.2560.2590.2560.2550.2490.2520.257Hotelling’s

p = 60, n1 = n2 = 31

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F

0.05 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.8870.8990.9060.9150.9280.9380.9490.9610.9670.976Hotelling’s

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F

0.01 1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.2480.2550.2580.2670.2810.2940.3050.3170.3300.354Hotelling’s

p = 80, n1 = n2 = 41

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F0.05

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Hotelling’s

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F0.01

1.0001.0001.0001.0001.0001.0001.0001.0001.0001.000F-MOD

0.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Hotelling’s

Table 3: Power analysis with restriction p < n1 + n2 − 1, where p is the number of columns (e.g., the number of genes) and n is the number of sample size 
(e.g., the number of individuals.)

Table 4 shows average effective column sizes computed from (11) when 10,000 simulation runs were performed. The effective 
column sizes decreased as correlations among genes got stronger. As expected, when genes are independent (i.e., ρ = 0) the effective 
column size was the same as the original number of genes (p).

Effective Column Size

                              ρ

0.90.80.70.60.50.40.30.20.10np

9.611.312.814.115.115.916.61717.317.42650

15.420.927.233.940.646.852.356.559.260.13160

17.125.033.943.252.561.368.974.978.880.14180

19.129.441.052.964.976.286.193.998.9100.620100

28.951.375.4100.3125.4149.1169.9186.7197.6200.820200

Table 4: Effective column size  p for  p when  n1  = n2  = nˆ

We used the gene expressions of type 2 diabetes from the data base Gene Expression Omnibus (GEO) with accession number 
GSE25724 [32] (data was not collected by us). The normalized gene expression data of p = 22, 283 genes was obtained from six 
type 2 diabetic human islets (population 1, n1 = 6) and seven non-diabetic human islet (population 2, n2 = 7). In over all design, 
human islets were isolated from the pancreas of organ donors by collagenase digestion followed by density gradient purification, 
then hand-picked and cultured two days in M199 culture medium. The platform GPL96 [HG-U133A]) by Affymetrix was used.

Real Data: Type 2 Diabetes Mellitus

The programming codes to analyze gene expression data were written in R software. The dimensions of the matrices X and Y were 
6 × 22, 283, and 7 × 22, 283, respectively. Since F -MOD test required the differences of the observations from two populations, 
six non-diabetic patients were chosen to have equal sample sizes for both populations (n1 = n2 = 6). That is, the dimension of the 
difference matrix was 6 × 22, 283. The data structure was high dimensional (p = 22, 283 genes, and n = 6 observations), which 
caused memory exhaustion in R. However, we used built-in functions such as “as.big.matrix” to do matrix operations and “bigcor” 
to compute correlation and covariance matrices of size 22, 283 × 22, 283. The effective column size in (11) was easily computed 
using the as.big.matrix function to multiply two or four matrices of sizes 22, 283 × 22, 283. 
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Before analyzing the data, we verified that the assumptions of the fixed one-way ANOVA were satisfied: (1) our data did not 
violate the assumption of normal distribution, because fixed one-way ANOVA is considered a robust test against the normality 
assumption. (2) the equality of variances were not violated because it is well known that when the error variances are unequal, the 
F test for equality of means with the fixed one-way ANOVA model is only slightly affected if all factor level sample sizes are equal 
or do not differ greatly. In real data, the sample size was six in each gene, hence this assumption was not violated. However, 3) the 
independence of the populations were violated. To show dependency, we computed the correlation matrices for both populations. 
The correlation matrix has entries of correlations for pairwise genes. The number of pairwise genes for 22,283 genes is (22,283)                      
= 2.48254903 × 108. We counted the pairwise correlations that are more than 0.5, 0.7, and 0.9 in absolute values. The result is shown 
in Table 5. We concluded that genes were correlated in both populations, and hence the classical F test was not performed. The 
Hotelling’s T2 was also not performed because 22, 283 < 6 + 6 − 1. Therefore, we only considered F -MOD test to analyze the data./

2

In the simulation study, we were only interested in the hypotheses defined in (2) or (3). That is, if there was a difference in 
the vector means of the populations. In the data analysis we proceeded one step further to identify differentially expressed 
genes if the null hypothesis in (2) or (3) was rejected. The statistic in (9) was Fobs = 5.609043, and the effective column size 
in (11) was computed as p = 9.424243. Since p-value= 4.13 × 10-5 was smaller than the significance levels α = 0.01 or α = 
0.05, we rejected the null hypothesis, and concluded that 22,283 genes were differentially expressed together. We then run t 
tests for each genes with the adjusted degree of freedoms p(n1 − 1) with and without Bonferroni corrections at α = 0.01 and 
α = 0.05 significance levels. Below, we only presented the number of significant genes without the Bonferroni corrections but 
provided the list of significant genes with the Bonferroni corrections in Tables 6-9. With or without Bonferroni corrections, 
we then compared these significant genes with significant genes listed at the GeneCards database. GeneCards is a searchable, 
integrated database of human genes that provides comprehensive, updated, and user-friendly information on all known and 
predicted human genes (http://www.genecards.org). The search is automatically extracted from more than 100 carefully 
selected web sources, and uses standard nomenclature and approved gene symbols. Moreover, it presents a rich subset of 
data for each gene by providing links to the original sources for further examination. Its use is free for academic non-profit 
institutions. We identified 1083 significant genes related to type 2 diabetes by searching the keywords “type 2 diabetes mellitus”.

ˆ

ˆ

DiabeticNon-diabeticCorrelations greater  
than in absolute value

107,977,419117,610,4550.5

52,999,81762,064,6820.7

8,784,87511,663,1630.9

Table 5: The number of pairwise correlations from the correlation 
matrices for non-diabetic and diabetic groups

Gene TitlePVALIDGene SymbolNo.

acid phosphatase 1,  soluble4.06e-12201630 _s_atACP11

aldolase B, fructose-bisphosphate3.5e-07217238_s_atALDOB2

arginase, type II1.34e-11203946_s_atARG23

catalase1.07e-08201432_atCAT4

carboxypeptidase E3.35e-08201117_s_atCPE5

carboxypeptidase E8.65e-14201116_s_atCPE6

chemokine (C-X-C motif) ligand  101.17e-11204533_atCXCL107

cytochrome b5 reductase  42.3e-07219079_atCYB5R48

ferritin, light polypeptide3.83e-07213187_x_atFTL9

fucosidase, alpha-L- 1, tissue4.38e-07202838_atFUCA110

glutamate   decarboxylase   2   (pancreatic   islets   
and brain, 65kDa)2.96e-07206780_atGAD211

glyceraldehyde-3-phosphate  dehydrogenase1.92e-07*GAPDH12

glyceraldehyde-3-phosphate  dehydrogenase3.45e-11**GAPDH13

group-specific component (vitamin D binding 
protein)7.04e-09204965_atGC14

glucagon5.33e-10206422_atGCG15

guanine nucleotide binding protein (G protein), 
alpha inhibiting activity polypeptide 19.24e-09209576_atGNAI116

GNAS complex locus1.79e-08200981_x_atGNAS17

GNAS complex locus6.95e-08214548_x_atGNAS18

GNAS complex locus1.17e-07200780_x_atGNAS19
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Gene TitlePVALIDGene SymbolNo.

GNAS complex locus1.21e-08212273_x_atGNAS20

GNAS complex locus7.59e-13214157_atGNAS21

glutathione  peroxidase  3 (plasma)2.08e-08214091_s_atGPX322

gremlin 17.55e-13218468_s_atGREM123

gremlin 17.54e-11218469_atGREM124

glycogenin 11.72e-08201554_x_atGYG125

3-hydroxy-3-methylglutaryl-CoA  reductase6.44e-12202539_s_atHMGCR26

hypoxanthine  phosphoribosyltransferase  11.95e-08202854_atHPRT127

heat shock 70kDa protein  81.08e-12210338_s_atHSPA828

islet amyloid polypeptide1.95e-18207062_atIAPP29

isoleucyl-tRNA  synthetase  2, mitochondrial2.22e-08217900_atIARS230

leptin receptor overlapping transcript1.57e-07202377_atLEPROT31

lipase A, lysosomal acid, cholesterol  esterase1.28e-08201847_atLIPA32

nicotinamide  phosphoribosyltransferase1.13e-09217738_atNAMPT33

neurogenic differentiation 12.51e-07206282_atNEUROD134

proprotein convertase subtilisin/kexin type 18.42e-18205825_atPCSK135
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Table 6: The significant genes of Type 2 Diabetes Mellitus at α = 0.01/22283 = 4.49 × 10-7 when genes are matched 
with GeneCards data base
The second column shows the name of the genes from UniGene bank. The third column shows the Entrez Gene 
Database UID number. The fourth column shows the p-values adjusted by Bonferroni correction. The last column 
shows the title of the gene represented by the probe set. In column three, * and ** symbols are replaced for AFFX-
HUMGAPDH/M33197_M_at and AFFX-HUMGAPDH/M33197_5_at, respectively.ene represented by the probe 
set. In column three, ? symbol is replaced for AFFX-HUMGAPDH/M33197_5_at respectively

Gene TitlePVALIDGene SymbolNo.

peroxisomal biogenesis factor 23.26e-12210296_s_atPEX236

phosphofructokinase, muscle8.3e-08210976_s_atPFKM37

pleiomorphic adenoma gene-like 13.36e-09209318_x_atPLAGL138

proteasome (prosome, macropain) 26S subunit,  
AT-Pase, 63.54e-08201699_atPSMC639

prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and cyclooxygenase)4.32e-07204748_atPTGS240

protein   tyrosine   phosphatase,	 receptor     type,	
N polypeptide 21.82e-07203029_s_atPTPRN241

6-pyruvoyltetrahydropterin synthase3.06e-07209694_atPTS42

retinol binding protein 4, plasma5.06e-14219140_s_atRBP443

stearoyl-CoA desaturase (delta-9-desaturase)4.2e-08200832_s_atSCD44

succinate dehydrogenase complex, subunit B, iron  
sulfur (Ip)2.37e-09202675_atSDHB45

sel-1 suppressor of lin-12-like (C. elegans)8.62e-10202061_s_atSEL1L46

single-stranded DNA binding protein   11.64e-10202591_s_atSSBP147

tissue factor pathway inhibitor (lipoprotein-associ-
ated coagulation inhibitor)1.64e-09210665_atTFPI48

transferrin receptor (p90, CD71)1.28e-10207332_s_atTFRC49

transthyretin5.23e-08209660_atTTR50

USO1 vesicle docking protein homolog  (yeast)2.12e-08201832_s_atUSO151

voltage-dependent anion channel 13.59e-09212038_s_atVDAC152
Table 7: Table 6 continues

Gene TitlePVALIDGene SymbolNo.

acid phosphatase 1,  soluble4.06e-12201630_s_atACP11

aldolase B, fructose-bisphosphate3.5e-07217238_s_atALDOB2

adenomatous  polyposis coli4.7e-07203525_s_atAPC3

arginase, type II1.34e-11203946_s_atARG24
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Gene TitlePVALIDGene SymbolNo.

ATP synthase, H+ transporting, mitochondrial   F1 
complex, beta polypeptide1.28e-06201322_atATP5B5

catalase1.07e-08201432_atCAT6

cystic fibrosis transmembrane conductance regulator 
(ATP-binding cassette sub-family C, member 7)1.06e-06215702_s_atCFTR7

carboxypeptidase E8.65e-14201116_s_atCPE8

carboxypeptidase E3.35e-08201117_s_atCPE9

connective tissue growth factor8.4e-07209101_atCTGF10

chemokine (C-X3-C motif) ligand  19.49e-07823_atCX3CL111

chemokine (C-X-C motif) ligand  101.17e-11204533_atCXCL1012

cytochrome b5 reductase  42.3e-07219079_atCYB5R413

cytochrome c, somatic1.85e-06208905_atCYCS14

fatty acid binding protein 5 (psoriasis-associated)2.08e-06202345_s_atFABP515

ferritin, light polypeptide3.83e-07213187_x_atFTL16

fucosidase, alpha-L- 1, tissue4.38e-07202838_atFUCA117

glutamate   decarboxylase   2   (pancreatic   islets   and 
brain, 65kDa)2.96e-07206780_atGAD218

glyceraldehyde-3-phosphate  dehydrogenase1.92e-07*GAPDH19

glyceraldehyde-3-phosphate  dehydrogenase3.45e-11**GAPDH20

group-specific component (vitamin D binding protein)7.04e-09204965_atGC21

glucagon5.33e-10206422_atGCG22

glutamine–fructose-6-phosphate transaminase 15.72e-07202722_s_atGFPT123

glyoxalase I7.17e-07200681_atGLO124

guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 19.24e-09209576_atGNAI125

GNAS complex locus1.79e-08200981_x_atGNAS26

GNAS complex locus1.21e-08212273_x_atGNAS27

GNAS complex locus1.17e-07200780_x_atGNAS28

GNAS complex locus7.59e-13214157_atGNAS29

GNAS complex locus6.95e-08214548_x_atGNAS30

glutathione  peroxidase  3 (plasma)2.08e-08214091_s_atGPX331

gremlin 17.54e-11218469_atGREM132

gremlin 17.55e-13218468_s_atGREM133

glycogenin 11.72e-08201554_x_atGYG134

3-hydroxy-3-methylglutaryl-CoA  reductase6.44e-12202539_s_atHMGCR35

Table 8: The significant genes of Type 2 Diabetes Mellitus at α = 0.05/22283 = 2.24 × 10−6 when genes are matched with 
GeneCards data base
In column three, * and ** symbols are replaced for AFFX-HUMGAPDH/M33197_M_at and AFFX-HUMGAPDH/
M33197_5_at, respectively

Gene TitlePVALIDGene SymbolNo.

hypoxanthine  phosphoribosyltransferase  11.95e-08202854_atHPRT136

heat shock 70kDa protein  81.08e-12210338_s_atHSPA837

heat shock 70kDa protein  81.58e-06208687_x_atHSPA838

heat shock 60kDa protein 1 (chaperonin)1.24e-06200806_s_atHSPD139

islet amyloid polypeptide1.95e-18207062_atIAPP40

isoleucyl-tRNA  synthetase  2, mitochondrial2.22e-08217900_atIARS241

insulin5.49e-07206598_atINS42

ISL LIM homeobox 11.75e-06206104_atISL143

leptin receptor overlapping transcript1.57e-07202377_atLEPROT44

lipase A, lysosomal acid, cholesterol  esterase1.28e-08201847_atLIPA45

nicotinamide  phosphoribosyltransferase1.13e-09217738_atNAMPT46
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Gene TitlePVALIDGene SymbolNo.

neurogenic differentiation 12.51e-07206282_atNEUROD147

nucleobindin 21.8e-06203675_atNUCB248

O-linked N-acetylglucosamine (GlcNAc) trans 
ferase(UDP-N-acetylglucosamine:polypeptide-N-
acetylglucosaminyl  transferase)

1.32e-06209240_atOGT49

proprotein convertase subtilisin/kexin type 18.42e-18205825_atPCSK150

pyruvate dehydrogenase complex, component X1.11e-06203067_atPDHX51

peroxisomal biogenesis factor 23.26e-12210296_s_atPEX252

phosphofructokinase, muscle8.3e-08210976_s_atPFKM53

pleiomorphic adenoma gene-like 13.36e-09209318_x_atPLAGL154

paraoxonase 26.93e-07210830_s_atPON255

protein S (alpha)1.88e-06207808_s_atPROS156

proteasome (prosome, macropain) 26S subunit, AT- 
Pase, 63.54e-08201699_atPSMC657

prostaglandin-endoperoxide synthase 2 (prostaglandin  
G/H synthase and cyclooxygenase)4.32e-07204748_atPTGS258

protein tyrosine phosphatase, non-receptor type 125.75e-07202006_atPTPN1259

protein   tyrosine   phosphatase,	 receptor     type,	
N polypeptide 21.82e-07203029_s_atPTPRN260

6-pyruvoyltetrahydropterin synthase3.06e-07209694_atPTS61

retinol binding protein 4, plasma5.06e-14219140_s_atRBP462

stearoyl-CoA desaturase (delta-9-desaturase)4.2e-08200832_s_atSCD63

succinate dehydrogenase complex, subunit B, iron  
sulfur (Ip)2.37e-09202675_atSDHB64

sel-1 suppressor of lin-12-like (C. elegans)8.62e-10202061_s_atSEL1L65

single-stranded DNA binding protein   11.64e-10202591_s_atSSBP166

somatostatin8.11e-07213921_atSST67

tissue factor pathway inhibitor (lipoprotein-associated 
coagulation inhibitor)1.64e-09210665_atTFPI68

tissue factor pathway inhibitor (lipoprotein-associated 
coagulation inhibitor)6.24e-07210664_s_atTFPI69

transferrin receptor (p90, CD71)1.28e-10207332_s_atTFRC70

transthyretin5.23e-08209660_atTTR71

USO1 vesicle docking protein homolog  (yeast)2.12e-08201832_s_atUSO172

voltage-dependent anion channel 13.59e-09212038_s_atVDAC173
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Table 9: Table 8 continues

There were 4215 significant genes at α = 0.01 significance level (without Bonferroni correction) in which 297 of them were matched  
with GeneCards database (results were not shown).
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After Bonferroni correction, there were 674 significant genes at α = 0.01/22283 = 4.49 × 10-7 significance level in which 52 were matched 
with GeneCards database (Tables 6 and 7). Without Bonferroni correction at α = 0.05 significance level, there were 7116 significant 
genes in which 554 of them were matched with the GeneCards (results were not shown). With Bonferroni correction at α = 0.05/22, 
283 = 2.24 × 10-6, there were 901 significant genes in which 73 of them were matched with the GeneCards data (Tables 8 and 9).
We used PANTHER classification system, which is a comprehensive, curated database of protein families, trees, subfamilies and 
functions [33,34], for the significant genes identified in Tables 6-9. The tool is available at http://pantherdb.org. The results are 
presented in Tables 10-12. The main goals of PANTHER are to make accurate inference of genes and protein functions over large 
sequence databases. PANTHER extrapolates phylogenetic trees to represent gene family evolution. It also identifies subfamilies and 
protein class. In Tables 10-12, we presented families/subfamilies and protein class for each gene. The significant genes were grouped 
in the following protein classes: peptide hormones and protein hormones (have an effect on the endocrine system of animals and 
humans); DNA-binding proteins (can incorporate domains as the zinc finger, the helix-turn-helix, and the leucine zipper that 
facilitate binding to nucleic acid); acetyltransferase or transacetylase (is a type of transferase enzyme that transfers an acetyl group); 
carbohydrate kinase domain also known as CARKD; chemokines (are a family of small cytokines, or signaling proteins secreted 
by cells); hydrolase (is an enzyme that catalyzes the hydrolysis of a chemical bond); dehydrogenase also called DHO (is an enzyme 
belonging to the group of oxidoreductases that oxidizes a substrate by a reduction reaction that transfers one or more hydrides (H-) 
to an electron acceptor); peroxidases (are a large family of enzymes); and reductase (is an enzyme that catalyzes a reduction reaction).
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PANTHER Protein ClassPanther family/subfamilyGene SymbolNo.

Adenomatous polyposis coli protein 
(pthr12607:sf11)APC1

storage proteinFerritin light chain (pthr11431:sf47)FTL2

3-hydroxy-3-methylglutaryl-
Coenzyme a reductase (pthr10572:sf2)HMGCR3

Peroxisome biogenesis factor2 PEX2 ortholog PEX24

KRAB box transcription factorZinc finger protein plagl1 (pthr10032:sf227)PLAGL15

oxygenaseProstaglandin g/h synthase 2 (pthr11903:sf8)PTGS26

ATP ligand-gated    ion    channel; DNA 
binding protein; hydrolase

Atp  synthase  subunit  beta,   mito-channel;
Chondrial    (pthr15184:sf44) ATP5B7

Vitamin d-binding protein (pthr11385:sf11)GC8

heterotrimeric G-proteinGuanine nucleotide-binding Protein g(i) 
subunit alpha-1 (pthr10218:sf227)GNAI19

glycosyltransferaseGlycogenin-1   (pthr11183:sf18)GYG110

growth factor; peptide hormoneInsulin-related  (pthr11454:sf9)INS11

Serum  paraoxonase/arylesterase  2
(pthr11799:sf17)PON212

Fatty acid-binding protein,
Epidermal-related  (pthr11955:sf58)FABP513

Gremlin-1 (pthr15283:sf3)GREM114

glycosyltransferase; mutaseHypoxanthine-guanine phosphoribo-
syltransferase  (pthr22573:sf38)HPRT115

peptide hormoneIslet amyloid polypeptide (pthr10505:sf4)IAPP16

aminoacyl-tRNA  synthetaseIsoleucine–trna ligase, mitochon-Drial 
(pthr11946:sf82)IARS217

Prosaas (pthr15531:sf0)PCSK118

6-pyruvoyl tetrahydrobiopterin syn- Thase 
(pthr12589:sf1)PTS19

hydrolaseArginase-2, mitochondrial (pthr11358:sf18)ARG220

growth factorConnective tissue growth factor 
(pthr11348:sf7)CTGF21

Tissue alpha-l-fucosidase (pthr10030:sf2)FUCA122

Table 10: Functional classification of the genes in Tables 6-9 by PANTHER

PANTHER Protein ClassPanther family/subfamilyGene SymbolNo.

DehydrogenaseGlyceraldehyde-3-phosphate dehy- Droge-
nase (pthr10836:sf51)GAPDH23

Lactoylglutathione lyase (pthr10374:sf8)GLO124

Homeobox  transcription  factor; zinc 
finger  transcription  factor;   nucleic acid 
binding

Insulin gene enhancer protein  isl-1 
(pthr24204:sf3)ISL125

Glycosyltransferase
Udp-n-acetylglucosamine–peptide 
N-acetylglucosaminyltransferase 110 Kda 
subunit (pthr23083:sf364)

OGT26

Serine proteaseNeuroendocrine convertas 1 
(pthr10795:sf407)PCSK127

Hydrolase 26s  protease  regulatory  subunit  10b 
(pthr23073:sf31)PSMC628

Protein phosphatase Tyrosine-protein   phosphatase   non-receptor 
type 12  (pthr19134:sf283)PTPN1229

DNA binding proteinSingle-stranded dna-binding pro- Tein, 
mitochondrial (pthr10302:sf0)SSBP130

ReceptorTransferrin receptor protein 1 
(pthr10404:sf26)TFRC31

Anion channel Cystic  fibrosis transmembrane conductance 
regulator (pthr24223:sf19)CFTR32
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PANTHER Protein ClassPanther family/subfamilyGene SymbolNo.

Chemokine C-x-c motif chemokine 10 (pthr10179:sf47)CXCL1033

Basic helix-loop-helix transcription 
factor; nuclease

Neurogenic differentiation factor 1 
(pthr19290:sf88)NEUROD134

Nucleic acid binding; annexin; calmo-
dulinNucleobindin-2 (pthr19237:sf22)NUCB235

Acetyltransferase Pyruvate dehydrogenase pro-Tein x  
component, mitochondrial (pthr23151:sf57)PDHX36

Carbohydrate kinase 6-phosphofructokinase, muscle type
(pthr13697:sf13)PFKM37

transfer/carrie  protein Retinol-binding protein 4 (pthr11873:sf2)RBP438

Acyl-coa desaturase (pthr11351:sf31)SCD39

Enzyme  modulatorProtein sel-1 homolog 1 (pthr11102:sf70)SEL1L40

Peptid hormoneSomatostatin  (pthr10558:sf2)SST41

Membrane traffic proteinGeneral vesicular  transport  factor P115 
(pthr10013:sf0)USO142

Cytochrome c pthr11961:sf15)CYCS43

 13     Journal of Biostatistics and Biometric Applications
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Table 11: Table 10 continues

PANTHER Protein ClassPanther family/subfamilyGene SymbolNo.

 
Guanine nucleotide-binding protein 
G(s)   subunit   alpha   isoforms  xlas 
(pthr10218:sf36)

GNAS44

Cytokine receptorLeptin receptor gene-related protein
(pthr12050:sf3)LEPROT45

Transporter; transfer/carrier Transthyretin (pthr10395:sf12)TTR46

 Fructose-bisphosphate aldolaseb 
(pthr11627:sf2)ALDOB47

PeroxidaseCatalase (pthr11465:sf9)CAT48

MetalloproteaseCarboxypeptidase e (pthr11532:sf59)CPE49

ReductaseCytochrome b5 reductase 4 (pthr19370:sf122)CYB5R450

Peptide hormoneGlucagon (pthr11418:sf0)GCG51

Transaminase
Glutamine–fructose-6-phosphate 
Aminotransferase [isomerizing] 1
(pthr10937:sf2)

GFPT152

LipaseLysosomal acid lipase/cholesteryl es- Ter 
hydrolase (pthr11005:sf26)LIPA53

CytokineNicotinamide phosphoribosyltrans-
Ferase (pthr11098:sf15)NAMPT54

Vitamin k-dependent proteins (pthr24040:sf0)PROS155

Anion channel; voltage-gated   ion 
channel

Voltage-dependent anion-selective channel 
protein 1  (pthr11743:sf13)VDAC156

Protein phosphatase; reductaseLow molecular weight phosphortyrosine pro-
tein phosphatase (pthr11717:sf7)ACP157

ChemokineFractalkine (pthr12015:sf92)CX3CL158

DecarboxylaseGlutamate decarboxylase 2 (pthr11999:sf77)GAD259

PeroxidaseGlutathione peroxidase 3 (pthr11592:sf32)GPX360

Hsp70 family chaperoneHeat shock cognate 71 kda  protein 
(pthr19375:sf239)HSPA861

Receptor; protein phosphataseReceptor-type tyrosine-protein phos-
Phatase n2 (pthr19134:sf266)PTPRN262

DehydrogenaseSuccinate dehydrogenase [ubiquinone] iron-
sulfur subunit, Mitochondrial (pthr11921:sf29)SDHB63

Serine protease inhibitorTissue factor pathway inhibitor
(pthr10083:sf238)TFPI64

Table 12: Table 10 continues
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Microarray data has a high dimensional data structure that makes statistical inference from this type of data challenging. The most 
widely used statistical methods for finding differentially expressed genes from microarray data are univariate. While univariate 
methods do not take correlations among genes into account, gene-gene interactions shouldn’t be ignored in testing procedures. 
Multivariate statistical methods can overcome this deficiency of univariate methods by taking gene-gene interactions into account 
through variance-covariance matrices. However, these methods are sometimes not straightforward, and moreover ignore the 
multidimensional structure of the gene expression data.

Conclusion

The Hotelling’s T2 test is one of the multivariate analysis methods that takes correlations among genes into account but requires 
the restriction p < n1 + n2 − 1, when two populations are considered with sample sizes of n1 and n2. In microarray experiments, it 
is almost impossible to satisfy this condition because p is always larger than n1 and n2. That means Hotelling’s T2 suffers to handle 
curse of dimensionality. One solution is to apply Principal Component Analysis (PCA), or some other methods to satisfy the 
restriction before implementing the Hotelling’s T2 test. However, even this condition is satisfied, this test still suffers lack of powers 
when p, n → ∞ with p/n → 1 − Є for small values of Є > 0.

In the Real Data section, we analyzed gene expressions of type 2 diabetes [32]. There were 117,610,455 pairwise genes that had 
correlations in absolute value more than 0.5 in the non-diabetic group, and 107,977,419 pairwise genes that had correlations in 
absolute value more than0.5 in the diabetic group. We concluded that the assumptions of independence were violated in both 
groups, and hence the classical F test was not performed. We also did not implement Hotelling’s T2 test because the restriction 22, 
283 < 6 + 6 − 1 did not hold. Since F -MOD takes correlations among genes into account, we analyzed the data only using F -MOD 
test with and without Bonferroni corrections. For example, we identified 901 significant genes in which 73 of them were matched 
with the GeneCards data at α = 0.05/22, 283 = 2.24 × 10-6.

In this paper, we consider F -MOD test that used the novel idea of effective column size concept in microarray data. The test 
provides valid testings and 100% powers for any ρ. More- over, the computation of F -MOD can easily be performed in R using 
built-in functions such as “as.big.matrix” and “bigcor” without exhausting the memory in R. To adopt the data structure from the 
multivariate case to the univariate case, the differences of the data matrices X and Y were considered as observations. If the null 
hypothesis in (2) is rejected, then we suggest testing to identify differentially expressed genes

                                               H0 : µ1i = µ2i	      versus	 Ha : µ1i ≠ µ2i	 (i = 1, 2, . . . , p)

using the classical t-test with p(n1 − 1) degree of freedoms with Bonferroni correction. Here, µ1i is the mean expression of gene i 
from population 1, and µ2i is the mean expression of gene i from population 2.

ˆ

We suggest for researchers to consider the F -MOD test with a multiple test adjustment correction, such as Boferroni correction, 
instead of the classical F test if the assumption of independence is in question. Hotelling’s T2 is the second competitive test to F 
-MOD. However, the restriction p < n1 + n2 − 1 does not hold in microarray data, and renders this test inapplicable. We believe 
that the use of effective column size in microarray experiment will be a novel approach that will help practitioners to choose an 
easy, effective, and powerful testing procedure instead of a complicated or a procedure with restrictions, such as Hotelling’s T2 test.
In future work, it is interesting to investigate the performance of a test that modifies Hotelling’s T2 test by taking into account the 
effective column size concept in the degrees of freedoms. 

We would like to thank the referees for their valuable comments that helped improve the quality of the article.
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