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In the analysis of competing risks data, it is common that the exact cause of failure for certain study subjects is missing. This problem 
of missing failure type may be due to inadequacy in the diagnostic mechanism or reluctance to report the exact cause of failure. In the 
present paper, we consider the nonparametric estimation of cumulative cause specific reversed hazard rates for left censored competing 
risks data under masked causes of failure. We first develop maximum likelihood estimators of cumulative cause specific reversed hazard 
rates. We then consider the least squares type estimators for cumulative cause specific reversed hazard rates, when the information 
about the conditional probability of exact failure type given a set of possible failure types is available. Simulation studies are conducted 
to assess the performance of the proposed estimators. We illustrate the applicability of the proposed methods using a data set.

Abstract

In survival studies, the failure (death) of subjects may be attributed to one of several causes or types, known as competing risks. 
In such situations, the subject is exposed to two or more causes of failure, but its eventual death can be due to exactly one of these 
causes of failure. In this context, for each subject, we observe a random vector (T, J) where T denotes (possibly censored) survival 
time and J represents cause of death (exactly one of k possible causes). J takes on values in the set {1, 2, ..., k}. Modeling and analysis 
of such competing risks data under right censoring are usually carried out using cause specific hazard rates λj (t) defined by,
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For various properties of λj (t), [1-3].

There are situations in the analysis of competing risks data where the exact cause of failure for certain subjects is missing. For 
example, due to inadequacy in the diagnostic mechanism, the experimentalists quite often are uncertain about the true failure 
type or are reluctance to report any specific value of J for some objects. Dinse was among the first to discuss the uncertainty in the 
information on failure types while estimating survival due to different failure types [4]. In such contexts, information on failure 
type is either completely available or not available at all. This problem with two failure types was studied subsequently by Miyakawa 
(1984), Racine - Poon and Hoel (1984), Lo (1991), Mukerjee and Wang (1993), Goetghebuer and Ryan (1990, 1995), Dewanji 
(1992) and Lu and Tsiatis (2001) [5-12]. Flehinger, et al. (1998) have considered a general pattern of missing failure types for the 
purpose of estimating survival due to different types, with the strong assumption of proportional hazards due to different types 
[13]. Flehinger, et al. (1998) emphasized on the parametric modelling with more general case, where the competing risks are not 
assumed to have proportional hazard functions [14]. Later Dewanji and Sengupta (2003) developed nonparametric maximum 
likelihood estimator for λj (t) with missing at random assumption and also proposed a nonparametric estimator for cumulative 
cause specific hazard rates using counting process approach [15]. Recently, Sen, et al. proposed a semiparametric Bayesian approach 
for analyzing competing risks survival data with masked cause of death [16]. Hyun, et al. developed a semiparametric proportional 
hazards model for the cause specific hazard function in the analysis of competing risks data with missing cause of failure [17-20].
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In survival studies, it is likely that some study objects encounter the event of interest before the start of the study. For example, 
in alzheimer studies, an elder person is at risk of multiple events like dementia and death. However, some subjects are demented 
before the start of the study, which is an incidence of left censoring. Thus, such studies give rise to left censored competing risks 
data. The existing models and methodologies for the analysis of competing risks data become inadequate in the presence of left 
censored observations.

Journal of Biostatistics and Biometric Applications

Sankaran and Anjana presented the analysis of competing risks data using cause specific reversed hazard rates under left censoring 
[29]. Recently, Sankaran and Anjana introduced a proportional cause specific reversed hazards model for modeling and analysis of 
left censored competing risks data in the presence of covariates [30]. The problem of missing failure types was studied in literature 
by various researchers under right censoring [11,12,18-20]. Very Recently, Dewanji, et al. considered the regression problem, in 
which the cause specific hazard rates may depend on some covariates, and consider estimation of the regression coefficients and 
the cause specific baseline hazards under the general missing pattern using some semi- parametric models [31]. In many occasions, 
this problem of missing failure type may also arise under left censoring. Motivated by this, in this paper, we present nonparametric 
inference procedures for left censored competing risks data when causes of failure are masked.

Cause specific reversed hazard rates

The concept referred as reversed hazard rate, defined 

plays a pivotal role in modeling and analysis of left censored failure time data. The function h(t), which was proposed as a dual to the 
hazard rate by Barlow (1963), used in many contexts. In parallel systems of independent and identically distributed components, 
the hazard rate of the system lifetime is not proportional to the hazard rate of the lifetime of each component, however the reversed 
hazard rate of the system lifetime is proportional to the reversed hazard rate of the lifetime of the each component [21]. For various 
properties and applications of (1.2), [3,22-28].

The present paper is organized as follows. We defined the cause specific reversed hazard rates and study their properties, then 
discussed the nonparametric estimation of the cumulative cause specific reversed hazard rates under masking. We first formulated 
the likelihood function and considered the maximum likelihood estimation procedure for the estimation of cause specific reversed 
hazard rates. We then give least squares type estimator for cumulative cause specific reversed hazard rates, then the simulation 
studies are carried out to investigate the performance of the estimators. Then we applied the proposed procedures to a data set. 
Finally the conclusion includes our present work.

Let (T , J) be a pair of random variables as described in introduction Section . Let F (t) be the distribution function of T. The cause 
specific reversed hazard rate of T is defined as

The hj (t) specifies the instantaneous rate of failure of a subject at time t due to cause j given that it failed before time [29]. Denote 
Fj (t)=P[T ≤t, J =j]  as the cumulative incidence function of T. We can write (2.1) as

where                            is the cause specific density of T. We assume that the k failures are mutually exclusive and exhaustive so that 
a subject can have at most one realized failure time with an identifiable cause. Then marginal reversed hazard rate for T is given by,

Now the distribution function for T can be expressed in terms of cause specific reversed hazard rates as,
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where                          is the cumulative reversed hazard rate for T and Hj (t)=                Now from (2.2), we obtain

The function hj (t) fully describes the distribution of (T , J ) in multiple failure mode settings. For more inference on (2.1) [29].

Our objective is to develop nonparametric estimators for cumulative cause specific reversed hazard rates and cumulative incidence 
functions for left censored competing risks data, when some of the causes of failure are masked.

Let X be a non-negative random variable with distribution function F(t) which is left censored by the random variable C . Under 
left censoring one could observe (T , δ), where T = max(X, C) and δ is the censoring indicator(1 for failure and 0 for censoring).

In addition, we observe the set G    {1, 2, . . . , k} representing the possible failure types when δ = 1. If failure occurs, G gives the 
partial information about the failure type. This information is complete when G is a singleton set.

In (Maximum likelihood estimator), we develop EM algorithm for nonparametric maximum likelihood estimation. In (Weighted 
least squares estimator), we suggest another procedure for estimation of cumulative cause of specific reversed hazard rates using 
method of weighted least squares. This method facilitates the analysis when information about the probability that a particular 
cause is responsible for the failure from a given set of possible causes is available to us.

where Ai is the set of individuals failed or censored at time ti. From (3.1) we can see that the nonparametric maximum likelihood 
estimators for the cause specific reversed hazard rates have masses at m distinct observed failure times s1 < s2 < ... < sm. Then, we 
can write hj (si ) as the discrete cause specific reversed hazard rate of type j at time si . Thus, using the identity 

where Di is the set of individuals failed at time si , di is the number of individuals failed at time si and ni be the number of individual 
failed up to time si . We use EM algorithm for finding the maximum likelihood estimator for hj (t). By assuming that the cause of 
failure of each individual is available, the complete data likelihood can be written as, 
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Nonparametric estimation
In this section we discussed the nonparametric estimation of cumulative cause specific reversed hazard rates and cumulative in-
cidence functions.

⊆

Maximum likelihood estimator
Denote the observed data for ith individual by (ti, δi, δi gi), where ti, δi, gi are the observed values of T, δ, G respectively for i = 1, 2...n. 
Assume that the missing at random assumption for observing gi ( Little and Rubin (1987)) that is given failure time and failure type, 
probability of observing g is same for all the types contained in g (Dewanji and Sengupta (2003)) [15,32]. The likelihood function 
for the observed data can be written as,
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Where
xjr= 1 if rth individual failed due to cause j
= 0 otherwise,
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Following the steps of Dewanji and Sengupta (2003), we can show that the observed information matrix corresponding to (3.2) 
is positive definite and then the likelihood function (3.2) is concave and has a unique maximum [15]. Thus the EM algorithm 
mentioned above converges to this unique maximum (Dempster et al. (1977), Wu (1983)) [33,34].

The above mentioned EM algorithm gives the nonparametric estimators,         for cause of specific reversed hazard rates. Thus the 
nonparametric estimators for the cumulative cause specific reversed hazard rates is obtained as                             The asymptotic vari-  

ance of the estimator can be obtained from the observed information matrix using the technique given in Louis (1982), as
 ment 

ioned in Dewanji and Sengupta (2003) [15,35].

Often, the information about the probability that a particular cause is responsible for the failure from a given set of possible 
causes is available to us. By incorporating this information, in this subsection, we suggest a nonparametric estimation procedure 
for cumulative cause specific reversed hazard rates using method of weighted least squares. Suppose that, for each individual, we 
observe a failure time or censoring time and a set g, representing possible causes of failure.

which is the number of individuals failed due to cause j at time si and

The E step of the algorithm takes the conditional expectation of djiʹs or xjrʹs, given the initial estimate of hj(ti)ʹs and the incomplete 

observed data. Thus the conditional expectation of xjr, denoted by        is given as                            for j Є gr and 0 otherwise. Then 

the conditional expectation of dji is obtained as                           The M step maximizes the conditional expectation of logLc with respect 

to              to get the better estimates                      The process is repeated until the estimate converges.

We define the conditional probability of observing g Э j as the set of possible causes, given the failure of the component at time t 
due to cause j as,

Weighted least squares estimator
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Pgj (t) = P [G = g|T = t, J = j, δ = 1].         (3.5)

When j Є g, then Pgj (t) = 0 and for fixed j,               =1. Assume that the censoring time and missing mechanism are independent. 
Thus (3.5) can be written as,

/ ( )gj
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Pgj (t) = P [G = g|T = t, J = j].                    (3.6)

We now define the reversed hazard rate for failure due to cause j with            observed as set of possible causes as,g j

So, that hgj(t) is the product of hj(t) and Pgj(t). Thus (3.7) becomes,

hgj(t) = hgj(t) Pgj(t).                             (3.8)

Then the reversed hazard rate at time t with g observed as set of possible causes can be written as,
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Note that the probabilities Pgj (t)' are to be estimated in practice. In order to estimate these probabilities in practice, we make a 
convenient assumption that Pgj(t) is independent of time t and henceforth denote as Pgj . Using (3.9) we have
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Where H*
g (t) is the (2k − 1) × 1 vector of Hg (t)’s, H* 

g (t)'s, is the k × 1 vector of Hj(t)’s and P is the (2k − 1) × k matrix of Pgj’s.

To estimate H*
g (t), we observe n independently and identically distributed observations (Ti, δi, δi gi), i = 1, 2, ..n; where Ti = max(Xi , 

Ci ), δi = I(Xi = Ti ) and g be the set of possible causes associated with the failure of i th individual. Consider the (2k − 1) dimensional 
counting process {Ng (t)}g Є G, where G contains all the non-empty subsets of {1, 2...k} and Ng(t) represents the number of events 
occurring in (t, τ ), with g as the observed set of possible causes. Assume that the point of reference, τ is far away from the time 
span of interest. Now we define

Following Andersen, et al. (2003) we show in Appendix A that Mg(t)’s are the local square integrable martingales [36]. Then, the 
nonparametric estimator of Hg(t) is obtained as,

Where Y(t) is the number of failures up to time t, C(u) = I(Y(u) > 0) and t0 = inf (t; F (t) < 1). The details are given in Appendix A.

Now, using martingale central limit theorem we see that (3.14) converges to a Gaussian process with mean Hg(t) and variance σ2(t), 
which is consistently estimated by,

Using (3.12) and (3.14) we get,

Where            is the vector of           and Є (t) is a vector of Gaussian martingales whose variance is consistently estimated by the matrix 
diag           . Now (3.16) is in the form of a linear model with P to be estimated. Let    be a consistent estimator of P. Then by using 
the principle of weighted least squares, a consistent estimator of H*(t) is,

where V(t) is the inverse of the estimated diagonal covariance matrix of           , which is given by 

where G contains all the non-empty subsets of {1, 2, ...k}. We denote fg = P [G = g], and qjg = P [J = j|G = g]. Thus Pgj can be estimated 
using (3.18), from the values of fg and qjg . The information about qjg may be available which can utilized to estimate Pgj .

For fixed t,          converges in distribution to a (2k− 1) variate normal with mean Hg
*(t). Then           converges in distribution to a 

k variate normal with mean H*(t) and variance covariance matrix is estimated consistently by                  . This asymptotic variance 
can be used for constructing large sample confidence limits.

H*
g (t) = P H*(t)                 (3.12)

dMg(t) = dNg(t) − Y(t)dHg(t).                 (3.13)
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where                                is the estimator of cumulative reversed hazard rate for T . Note that the least squares estimator of Hj(t), may 

not be monotone and it may violate non increasing nature at some points. To develop the estimator with monotonic decreasing 
property one can use the pooling-the-adjacent-violators algorithm.
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Table 1: Bias and MSE of the maximum likelihood estimates of Hj(t), j = 1, 2 for λ = 0.5, a = 1.5, and ϕ = 0.4

Now consider the testing of null hypothesis, H0 : Hj(t) = H0j(t) for all j, and a fixed t' .

We then computed weighted least squares estimates Ĥ1(t) and Ĥ2(t) at different time points and for three cases of qjg . The choices 
of qjg ’s for the masked set g = {1, 2} are,

We can formulate the test statistic as,

( ) ( )( ) ( )( ) ( ) ( ) ( )T * *t H * t T  P V t P  ( H t  H  t         .ˆ ˆ ˆ ˆχ ′ = ′ ′ ′ − ′2
0 3 21

where H*
0(t) is the vector of H0j(t). Since for fixed t',               converges in distribution to a k variate normal, the distribution of (3.21) 

is asymptotically chi-square with k degrees of freedom under H0. Thus we reject H0 if 
( )Ĥ * t′

( ) ( )t  . χ χ α′ >2 2

Simulation study
To asses the performance of the estimators, we carried out a simulation study. Suppose there are two causes of failure. We generate 
random samples from the following parametric family of sub-distribution functions proposed by Dewan & Kulathinal [37].

Let

F1(t) = P [T ≤ t, J = 1] = ϕFa(t)

                                                                                       and

                                                                                      F2(t) = P [T ≤ t, J = 2] = F(t)-ϕFa(t)                (4.1)

where 1 ≤ a ≤ 2, 0 ≤ ϕ ≤ 0.5 and F(t) is the distribution function of failure time T . Note that ϕ = P [J = 1]. The restriction on the 
parameters are imposed due to nonnegativity condition of cause specific density function of T . From (4.1), we obtain 
h1(t) = ϕaFa−2(t)f(t) and h2(t) = h(t) − h1(t).

Let the failure time distribution be exponential with F(t) = 1 − exp[−λt]. Censored observations are generated from U (0, b) where 
b is chosen such a way that approximately 20% of the observations are left censored. We generate random sample of sizes n = 100, 
and 250. The masked set g = {1, 2} is randomly allocated to the observed lifetimes so that the chance for an observed lifetime to be 
masked is 0.5. We evaluated the estimates of H1(t) and H2(t) using two different methods in Nonparametric estimation.

We first computed the maximum likelihood estimates of the Hj(t), j = 1, 2. Based on 1000 simulation, we compute absolute bias 
and mean squared error (MSE) of the estimates for different parametric values of λ, a and ϕ. Simulation study shows that the bias 
and MSE of the estimates do not vary much with different values of λ, a and ϕ. We therefore present results for two parametric 
combinations of λ, a and ϕ, which are given in Tables 1 and 2.

Un censored20% censored
tn

Bias      MSEBias      MSEBias     MSEBias      MSE

0.1287    0.0619

0.1194    0.0211

0.0528    0.0041

0.0252     0.0056

0.1254     0.0481

0.1038    0.0210

0.0704    0.0031

0.0364    0.0021

0.1293    0.0700

0.1201    0.0500

0.0654    0.0768

0.0324    0.0413

0.1273     0.0413

0.1214     0.0342

0.0973     0.0024

0.0554      0.0091

0.5

1

1.5

2

100

0.0513     0.0120

0.0429      0.0070

0.0346      0.0024

0.0093       0.0009

0.1151    0.0223

0.0807    0.0103

0.0451    0.0021

0.0138    0.0002

0.0932     0.0644

0.0511     0.0321

0.0217     0.0520

0.0113      0.0414

0.1179      0.0220

0.0984     0.0090

0.0532     0.0010

0.0333     0.0030

0.5

1

1.5

2

250

 ( )H t   1
 ( )H t  2

 ( )H t   1  ( )H t  2

                                               (i) q1g = 0.5 and q2g = 0.5 (equal probability for cause 1 and cause 2) 

                                               (ii) q1g = 0.992 and q2g = 0.008 (greater probability for cause 1 ) 

                                      and  (iii) q1g = 0.008 and q2g = 0.992 (greater probability for cause 2)

These qjg’s are used to estimate Pgj’s. Based on 1000 replications, we computed absolute bias and MSE of the estimates of Hj(t), j = 1, 
2. Tables 3-5 provide bias and MSE of least squares estimates for different sample sizes.
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Table 3: Bias and MSE of least squares estimates of Hj(t), j = 1, 2 for q1{12} = 0.5 and q2{12} = 0.5

Simulation study shows that both bias and MSE decreases as sample size increases and slightly increases as censoring percentage 
increases. Moreover, as the time increases bias reduces. It may due to the fact that the left tail of observations are more affected by 
the censored observations. It may be noted that in the case of least squares estimator, bias is small and pretty close to each other 
for          and           when qjg’s are equal.

Table 2: Bias and MSE of the maximum likelihood estimates of Hj(t), j = 1, 2 for λ = 1, α = 1.75, and ϕ = 0.2

Un censored20% censored
tn

Bias      MSEBias      MSEBias     MSEBias      MSE

0.0704    0.0053

0.0468    0.0020

0.0393     0.0050

0.0229    0.0024

0.0994    0.0153

0.0637    0.0040

0.0515    0.0048

0.0344    0.0029

0.0932    0.0082

0.0817    0.0073

0.0532    0.0052

0.0316     0.0013

0.1143    0.0753

0.0932    0.0803

0.0734    0.0043

0.0532   0.0094

0.5

1

1.5

2

100

0.0636      0.0050

0.0317    0.0022

0.0171    0.0031

0.0092    0.0001

0.0663    0.0045

0.0538    0.0032

0.0471    0.0035

0.0288   0.0006

0.0913     0.0090

0.0432        0.0034

0.0224      0.0021

0.0210      0.0011

0.0982    0.0532

0.0734   0.0093

0.0666    0.0031

0.0326    0.0060

0.5

1

1.5

2

250

 ( )H t   1
 ( )H t  2

 ( )H t   1  ( )H t  2

When probability of occurrence of failure due to cause 1 is larger than that of cause 2 (q1g > q2g), then the bias is slightly less for            co- 
mpared to          , as expected.  Similarly, bias shows lesser values for         if probability of occurrence of failure due to cause 2 is 
larger than that of cause 1(q2g > q1g ).

 ( )H t   1  ( )H t  2

 ( )H t   1
 ( )H t  2 ( )H t   1

Un censored20% censored
tn

Bias      MSEBias      MSEBias     MSEBias      MSE

0.0213  0.0005

0.0200  0.0004

0.0113  0.0003

0.0023  0.0001

0.0482  0.0036

0.0213  0.0011

0.0124  0.0008

0.0073  0.0001

0.0372   0.0005

0.0212   0.0009

0.0137   0.0005

0.0087   0.0002

0.0574  0.0039

0.0319  0.0014

0.0174  0.0009

0.0077  0.0002

1

1.5

2

2.5

100

a=1.75 
ϕ=0.2
λ=1 0.0210  0.0070

0.0117   0.006

0.0032  0.0002

0.0017  0.0001

0.0437  0.0023

0.0223  0.0011

0.0103  0.0004

0.0050  0.0002

0.0365   0.0003

0.0201   0.0007

0.0128   0.0005

0.0087   0.0001

0.0572  0.0035

0.0313  0.0012

0.0163  0.0005

0.0064  0.0002

1

1.5

2

2.5

250

0.0706  0.0327

0.0632  0.0034

0.0319  0.0021

0.0133  0.0020

0.0732   0.0532

0.0703   0.0086

0.0584   0.0013

0.0111   0.0010

0.1787   0.0897

0.0940   0.0054

0.0592   0.0036

0.0179  0.00191

0.1613  0.0851

0.0938  0.0047

0.0666  0.0021

0.0162  0.0112

1

1.5

2

2.5

100

a=1.5 
ϕ=0.4 
λ=0.5 0.0538  0.0310

0.0432  0.0030

0.0211  0.0025

0.0120  0.0013

0.0687  0.03742

0.0573   0.0032

0.0329   0.0023

0.0113   0.0010

0.1641   0.0888

0.0729   0.0051

0.0505   0.0032

0.0175   0.0019

0.1591  0.0844

0.0811  0.0042

0.0655  0.0022

0.0260  0.0011

1

1.5

2

2.5

250

 ( )H t   1
 ( )H t  2

 ( )H t   1  ( )H t  2



Annex Publishers | www.annexpublishers.com                    
 
                             Volume 1 | Issue 2  

 
8Journal of Biostatistics and Biometric Applications

Table 4: Bias and MSE of least squares estimates of Hj(t), j = 1, 2 for q1{12} = 0.008 and q2{12} = 0.992

Un censored20% censored
tn

Bias      MSEBias      MSEBias     MSEBias      MSE

0.0782  0.0073

0.0336  0.0032

0.0211  0.0023

0.0101  0.0009

0.0932  0.0096

0.0326  0.0034

0.0118  0.0022

0.0093  0.0010

0.0857  0.0095

0.0499  0.0038

0.0310  0.0018

0.0209  0.0009

0.1002  0.0106

0.0562  0.0035

0.0326  0.0012

0.0188  0.0005

1

1.5

2

2.5

100

a=1.75 
ϕ=0.2
λ=1

0.0513  0.0032

0.0232  0.0024

0.0101  0.0017

0.0089  0.0015

0.0812  0.0093

0.0232  0.0021

0.0116  0.0010

0.0090  0.0006

0.0754  0.0063

0.0433  0.0023

0.0259  0.0009

0.0155  0.0004

0.0995  0.0104

0.0555  0.0033

0.0309  0.0012

0.0171  0.0004

1

1.5

2

2.5

250

0.0993  0.0572

0.0739  0.0474

0.0632  0.0032

0.0114  0.0021

0.1113  0.0773

0.0932  0.0349

0.0715  0.0027

0.0232  0.0010

0.1576  0.0832

0.1041  0.0513

0.0862  0.0071

0.0143  0.0021

0.1698  0.0888

0.1482  0.0439

0.0982  0.0072

0.0307  0.0052

1

1.5

2

2.5

100

a=1.5 
ϕ=0.4 
λ=0.5 0.0732  0.0513

0.0651  0.0428

0.0318  0.0024

0.0099  0.0011

0.0913  0.0432

0.0737  0.0132

0.0632  0.0017

0.0187  0.0011

0.1492  0.0826

0.0996  0.0092

0.0764  0.0051

0.0111  0.0018

0.1602  0.0885

0.1414  0.0431

0.0835  0.0022

0.0211  0.0016

1

1.5

2

2.5

250

 ( )H t   1
 ( )H t  2

 ( )H t   1  ( )H t  2

ˆ

ˆ

Table 5: Bias and MSE of least squares estimates of Hj(t), j = 1, 2 for q1{12} = 0.992 and q2{12} = 0.008

Un censored20% censored
tn

Bias      MSEBias      MSEBias     MSEBias      MSE

0.0356  0.0023

0.0264  0.0021

0.0201  0.0009

0.0052  0.0005

0.0232  0.0017

0.0117  0.0010

0.0108  0.0003

0.0082  0.0002

0.0456  0.0031

0.0271  0.0009

0.0259  0.0004

0.0092  0.0001

0.0270  0.0026

0.0186  0.0027

0.0135  0.0005

0.0094  0.0002

1

1.5

2

2.5

100

a=1.75 
ϕ=0.2
λ=1 0.0432  0.0032

0.0236  0.0007

0.0063  0.0001

0.0063  0.0001

0.0210  0.0020

0.0193  0.0032

0.0072  0.0021

0.0037 0.00030

0.0447  0.0029

0.0264  0.0008

0.0157  0.0003

0.0088  0.0037

0.0216  0.0011

0.0142  0.0021

0.0092  0.0001

0.0065  0.0003

1

1.5

2

2.5

250

0.1358  0.0216

0.1143  0.0132

0.0771  0.0032

0.0114  0.0014

0.1013  0.0376

0.0672  0.0413

0.0133  0.0017

0.0072 0.00090

0.1451  0.0316

0.1241  0.0577

0.0829  0.0033

0.0195  0.0031

0.1326  0.0728

0.0973  0.0191

0.0144  0.0024

0.0081  0.0001

1

1.5

2

2.5

100

a=1.5 
ϕ=0.4 
λ=0.5 0.0310  0.0203

0.1124  0.0100

0.0632  0.0030

0.0104  0.0010

0.0932  0.0326

0.0432  0.0104

0.0123  0.0010

0.0050 0.00030

0.1440  0.0303

0.1238  0.0570

0.0715  0.0032

0.0185  0.0013

0.1301  0.0701

0.0961  0.0182

0.0141  0.0021

0.0077  0.0001

1

1.5

2

2.5

250

 ( )H t   1
 ( )H t  2

 ( )H t   1  ( )H t  2
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Data analysis
To illustrate the proposed methodology, we consider the hard drives data given in Flehinger, et al. (1998) [13]. The data provide 
the failure times of hard drives of computer and corresponding cause of failures. There are 3 causes of failure denoted as 1, 2 and 3. 
We assume these causes act independently. All together 172 failures are reported in the study period, in which some of the failures 
are masked. The data are obtained from a two stage experimental procedure and we combine the data of two stages and apply the 
methods given in Nonparametric estimation to the data. Exact cause of failure is available for 66 out of 172 hard drives. The only 
observed masked group were {1, 2, 3} and {1, 3}.

The data set presented in first four columns of table given in Appendix A of Flehinger, et al. (1998) [13]. In table, second column 
represents the failure time. The third column (outcome) gives the cause of failure if it is identified correctly or resolved in Stage 2. 
Here -1 in third column indicates the unresolved problems. Fourth column gives the information about masking. We make the 
20% of data randomly to be left censored. We first consider Maximum likelihood estimator method and computed the maximum 
likelihood estimates of Hj(t) j = 1, 2, 3.

In order to illustrate the Weighted least squares estimator method for calculating the least squares estimates of Hj(t) j = 1, 2, 3, 
we require the probabilities Pgj. We consider P{1,3}1 = 0.412, P{1,3}3 = 0.446 and P{1,2,3}1 = 0.310, P{1,2,3}2 = 0.469, P{1,2,3}2 = 0.436. These 
probabilities are estimated in Flehinger, et al. by assuming Weibull model for the data [13]. Now we compute the least squares 
estimates of Hj(t) j = 1, 2, 3. We use pooling-the-adjacent-violators algorithm to achieve the monotonicity of the least squares 
estimates. Figure 1 depicts the plots of maximum likelihood estimates and least squares estimates of Hj(t) j = 1, 2, 3 along with 95% 
confidence limits.

Figure 1: Plot of (a) maximum likelihood estimates and (b) least square estimates of Hj(t) j = 1, 2, 3

              (a) Maximum Likelihood Estimates                                    (b) Lease Squares Estimates

http://www.annexpublishers.com/articles/JBIA/1201-Appendix.pdf
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The plots of estimates of cumulative incidence functions for three different causes are given in Figures 2 and 3. Figures 2 and 3 
show that, at early stages, the majority of the failure is due to cause 1 and after a certain time period (around t=2.7), failure due to 
cause 3 dominates.

Figure 2: Plot of maximum likelihood estimate of Fj(t)

Figure 3: Plot of least squares estimate of Fj(t)

Conclusion
We thank the editor and reviewer for their valuable comments and suggestions. The second author would like to thank Department 
of Science and Technology, Government of India for providing financial support for this work under INSPIRE fellowship.
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