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Abstract
In this paper, we introduce the notion of a complex interval which is significant for interval-valued data and interval-based signal 
processing. First, we present the space of complex intervals and investigate the quasilinear structure of the space of complex intervals. 
We observe that this space is Hilbert quasilinear space with a set-valued inner product. Finally, we give a application about interval 
system producing a filter related to interval-valued electroencephalogram (EEG) signals. 
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Introduction
Some methods associated with the biostatistic and biometric applications lie in the estimation of accuracy measures for population 
parameters, change of cancer cells, genetic mutations or EEG signal processing. A few of such applications are bootstrap method, 
carcinogenesis models and candidate gene analysis. The intervals constitute a mathematical background to eliminate such accuracy 
datas.

In recent years, there has been increasing interest in interval mathematics and interval-valued functions and their applications. 
Replacing a precise value by an interval value generally reflects the variability or uncertainty circumstances in observation process. 
In signal processing, in general, it is very difficult to deal with a process with reliable information about the properties of the 
expected variations. Such uncertainties in process lead us to set up mathematical foundation of interval-valued data and interval-
based signal processing [1-3]. Because of these reasons we want to study the quasilinear structure of the space of complex intervals 
for research of interval-valued functions (signals).

We mean a function f from R into the special set IC by an interval-valued signals. Now let us introduce special properties of IC. Each 
element x of IC is called a complex interval, that is,

, ,r r s sx x x i x x   = +   

where ,r rx x    and ,s sx x    are nonempty closed (real) intervals of R and i=√(-1), the complex unit. The intervals ,r rx x    and ,s sx x    
are called real and imaginary part of x, respectively. For example, x=[-2,1]+i[3,7] is a complex interval where [ ], 2,1r rx x  = −   and 

[ ], 3,7s sx x  =  . Of course, each real interval is a complex interval. ( )r sx may equal to ( )r sx and in this case ( ) ( ),r s r sx x 
    is written as 

[xr(s) ,xr(s)] or {xr(s)} or only xr(s) and is called a degenerate complex interval. More clearly, for any x,y ∈ R, [x,x]+i[y,y] is a complex 
degenerate interval and is written as {x} + i{y}. In this respect, R is a subset of IR, the set of all nonempty closed (real) intervals and 
the complex number C is a subset of IC. Further, IR is a subset of IC.

To get a comprehensive and healthy interval-valued signal processing we need a mathematical point of view. This is due to the fact 
that the sets IR and IC are not vector spaces. However, they are in accord with a similar (in fact more general) structure, namely a 
quasilinear space.

Inner Product Quasilinear Spaces
We will start this section by giving the definition of quasilinear spaces and some basic notions which will be used later on. Note that 
quasilinear spaces has been only introduced on the reel field R so far. As distinct from Aseev’s definition [4] and from our some 
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The Role of Case Reports in Generating Clinical Hypotheses

previous studies, we will consider the quasilinear spaces over a general field K. The elements of K are called scalars, practically, 
they will be real or complex numbers. We think that this approach may be formed more useful and suitable backdrop for some 
applications, especially, for interval-valued data analysis and signal processing.

K is called the scalar field of the quasilinear space X, and X is called a real quasilinear space if K = R and is called a complex quasi-
linear space if K = C. Mostly K will be C in this work.

A set X  is called a quasilinear space, (briefly QLS) on field K, if a partial order relation "≤", an algebraic sum operation, and an 
operation of multiplication by real or complex numbers are defined in it in such a way that the following conditions hold for any 
elements x,y,z,v ∈ X and any α,β ∈ K [4]:

     x ≤ x,     (1)

     x ≤ z if x ≤ y and y ≤ z,   (2)

     x = y if x ≤ y and y ≤ x,   (3)

     x + y = y + x,    (4)

     x + (y +z) = (x + y) + z,                   (5)

     there exists anelement θ ∈ X such that x + θ=x,(6)

     α(βx)=(αβ)x,    (7)

     α(x + y)=αx + αy,    (8)

     1x=x,     (9)
 
     0x=θ,     (10)

     (α + β)x ≤ αx + βx,   (11)

     x + z ≤ y + v if x ≤ y and z ≤ v,  (12)

     αx ≤ αy if x ≤ y.    (13)

Any real linear space is a QLS with the partial order relation defined by “x ≤ y if and only if x = y”. In this case, QLS axioms is the 
linear space axioms.

Perhaps the most popular example of nonlinear real QLSs is IR with the inclusion relation “⊆”, with algebraic sum operation

[ , ] [ , ] [ , ] { : , }x y x x y y x y x y a b a x b y+ = + = + + = + ∈ ∈

and with real-scalar multiplication 

 Proof of this assertion will be given by more general form. Another name of IR is ΩC(R), the set of all nonempty compact convex 
subsets of real numbers. A compact convex subset of Rn is called a convex body and the space of this subsets is denoted by ΩC (Rn), 
n = 1,2,.... Further, Ω(Rn) is the set of all nonempty compact subsets of real numbers and is another important example of nonlinear 
real QLSs. In general, Ω(E) and ΩC(E) stand for families of all nonempty closed bounded and nonempty convex closed bounded 
subsets of any normed linear space E, respectively. Both are real or complex QLSs with the inclusion relation, with multiplication 
by a real or complex number λ which is defined by

{ : }A a a Aλ λ= ∈

and with a slight modification of addition as follows:

{ : , }A B a b a A b B+ = + ∈ ∈

where the closure is taken on the norm topology of E.

[ ] [ ]
[ ] { }

, ,   0
, : .

, ,   0
x x

x x x a a x
x x

λ λ λ
λ λ λ

λ λ λ
 ≥= = = ∈ <
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We should mention n
 , the space of all n-fold real interval vectors [5] where n is a positive integers. For example a typical element 

of 2
 can be given as ([-1,2],[3,6]). Further, n

 is the space of all n-fold complex interval vectors ([1,3]-2i[1,2],[-1,0]+i[1,5]) is a 
typical element of 2

 .

Remark 2.1 For n=2,3,..., n
 is different from ΩC(Rn). For example, the unit ball

of R2 is an element of ΩC(R2). But B is not an element of 2
 . Further, they both are nonlinear quasilinear spaces by different 

operations and relations.
In this work we mainly interested in algebraic and metric structure of n-fold real or, in general, complex interval vectors and the 
interval functions. Although, they are not a vector space we will choice the term interval-vector due to its conventional usage.

Now, let us record some basic necessary results from [4]. In a QLS X, the element θ is minimal, i.e., x = θ if x ≤ θ. An element x' 
is called inverse of x ∈ X if x + x '= θ. The inverse is unique whenever it exists. An element x possessing inverse is called regular, 
otherwise is called singular.

Lemma 2.1 [4] Suppose that each element x in QLS X has inverse element x' ∈ X. Then the partial order in X is determined by equality, 
the distributivity conditions hold, and consequently X is a linear space.

Hence in a real linear space, the equality is the only way to define a partial order such that conditions (1)-(13) hold.

It will be assumed in what follows that -x = (-1) . x. Also, note that -x may not be x'. Any element x in a QLS is regular if and only 
if x - x = θ if and only if x' = -x.

Definition 2.1 Suppose that X is a QLS and Y ⊆ X. Then Y is called a subspace of X whenever Y is a QLS with the same partial order 
on X.

Theorem 2.1 Y is subspace of QLS X if and only if for every x, y ∈ Y and α, β ∈ K, α.x + β.y ∈ Y.

Proof of this theorem is quite similar to its classical linear algebraic analogue.
So we see easily that IR is a subspace of IC. Further, IC is a subspace of Ω(C).

Let X be a QLS and Y be a subspace of X. Suppose that each element x in Y has inverse element x' ∈ Y then by Lemma 2.1 the partial 
order on Y is determined by the equality. In this case Y is a linear subspace of X. An element x in QLS X   is said to be symmetric if 
-x = x and Xsym denotes the set of all symmetric elements. Also, Xr stands for the set of all regular elements of X while Xs stands for 
the sets of all singular elements and zero in X. Further, it can be easily shown that Xr, Xsym and Xs are subspaces of X. They are called 
regular, symmetric and singular subspaces of X, respectively. Furthermore, it isn’t hard to prove that summation of a regular element 
with a singular element is a singular element and the regular subspace of X is a linear space while the singular one is nonlinear at all.

Let X be a real or complex QLS. The real-valued function on X is called a norm, if the following conditions hold [4-9]:

0

,

,

,

x

x y x y

x x

x y

α α

>

+ ≤ +

=

≤

if x ≠ 0,                                                                 (14)

(15)

(16)

(17)if x ≤ y,then

if for any ε>0 there exists an element xε ∈ X such that

 x ≤ y + xε and x ε≤ then x ≤ y,

(18)

here x,y,xε are arbitrary element in X and α is any scalar.

A quasilinear space X with a norm defined on it, is called normed quasilinear space (briefly, normed QLS). It follows from Lemma 
2 that if any x ∈ X has inverse element x' ∈ X, then the concept of normed QLS coincides with the concept of real normed linear 
space. Notice again that x' may not be exist but if x' exists then x' = -x. Hausdorff metric or norm metric on X is defined by the 
equality

( ) ( ) ( )

1 2
inf{ 0 : , and , 1,2}.r r r

ir x y y x r ia a a≥ ≤ + ≤ + ≤ =h(x,y) =

Since x≤y+(x-y) and y≤x+(y-x), the quantity h(x,y) is well-defined  for any elements x,y ∈ X, and it is not hard to see that the 
function h satisfies all the metric axioms. Also we should note that h(x,y) may not equal to x y−  if X is not a linear space; however 
h(x,y) ≤ x y−   for every x, y ∈ X.

Lemma 2.2 [4] The operations of algebraic sum and multiplication by real or complex numbers are continuous with respect to the 
Hausdorff metric. The norm is continuous function respect to the Hausdorff metric.

( ){ }2 2
1 2 1 2, : 1B x x x x x= = + ≤
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Definition 2.4 [11] A quasilinear space X is called consolidate QLS whenever supFy exists for every y ∈ X and

Example 2.2 [11] For any normed linear space E, Ω(E) and ΩC(E) are consolidate NQLS.
On the other hand, it is clear that (ΩC(R))s∪{0} is nc-QLS. For example,

Proposition 2.1  The following conditions hold with respect to the Hausdorff metric:

( ) ( )
( ) ( ) ( )

, ,

) , , , ,

)

 

( , )

)i h x y h x y

ii h x y z v h x z h y v

iii x h x

α α α

θ

=

+ + ≤ +

=

for each α ∈ K and every x,y,z,v ∈ X.

Lemma 2.3 [4]

(a) Suppose that xn → x0 and yn → y0, and that xn ≤ yn  for any positive integer n. Then x0 ≤ y0.
(b) Suppose that xn → x0 and zn → x0. If xn ≤ yn ≤ zn for any positive integer n,  then yn → x0.
(c) If xn + yn → x0 and yn → θ then xn → x0. 

Example 2.1 [4] For a normed linear space E, a norm on Ω(E) is defined by ( ) EE
a E

A sup a
Ω

∈
= . Hence ΩC(E) and Ω(E) are normed QLSs. 

In this case the Hausdorff (norm) metric is defined as usual:

( , ) inf{ 0 : ( ), ( )},r rh x y r x y S y x Sθ θ= ≥ ⊆ + ⊆ +

where Sr(θ) is closed ball of E and x,y are elements of ΩC(E) or Ω(E). Further, ΩC(E) is a closed subspace of Ω(E). Further, Ω(E) and 
ΩC(E) are Banach space. For E=R, ΩC(R)=IR is a Banach space with the norm defined by 

, ]
[ , ] max

a x x
x x a

∈
=

 .

Now, let us give a useful type of QLSs called consolidate QLS.

Definition 2.2 [10] Let X be a QLS, M ⊆ X and x ∈ M. The set

{ : }M
x rF z M z x= ∈ ≤

is called floor in M of x . In the case of M = X it is called only floor of x and written briefly Fx instead of Fx
X.

Floor of an element x in linear spaces is {x}. Therefore, it is nothing to discuss the notion of floor of an element in a linear space.

Definition 2.3 [10] Let X be a qls and M ⊆ X. Then the union set

Ux∈M  Fx
M

is called floor of M and is denoted by FM. In the case of M = X, FX is called floor of the qls X.
On the other hand, the set 

  
X

M    = Ux∈M  
M

xF

is called floor in X of M and is denoted by X
M .

We refer to the reader to [10] for detailed informations about this topic.

{ }sup sup : .y ry F z X z y= = ∈ ≤

Otherwise, X is called non consolidate QLS and in this case it is written as nc-QLS sake for brevity.

Especially, we should note that the supremum in this definition is considered according to relation “≤” on X.

sup{x:x ∈ ((ΩC( ))s∪{0})r,x ⊆ y} = {0} ≠ y

for element y=[-2,3]∈(ΩC(R))s∪{0}. Also, no there exists any element x such that x ⊆ z for z=[1,3] ∈ (ΩC(R))s∪{0}.

Let us now give the definition of inner-product in a quasilinear space which is consistent with its linear analogue [7-9]. Later we 
will present some fundamental properties of inner-product and Hilbert QLSs. Previously let us introduce a definition.

Definition 2.5 For two quasilinear spaces (X,≤) and (Y,≥), Y is called compatible contains X whenever X ⊆ Y and the partial order 
relation "≤" on X is the restriction of the partial order relation "≥" on Y. We briefly use the symbol X ⊆  Y in this case. We write X ≡ 
Y whenever X ⊆  Y and Y ⊆  X.
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Remark 2.2 Hence X ≡ Y means X and Y are the same sets with the same partial order relations which make them quasilinear spaces. 
However, we may write X = Y for X ≡ Y whenever the relations are clear from context.

Definition 2.6 Let X be a QLS. Consolidation of X is the smallest consolidate QLS X̂ which compatible contains X, that is, if there 
exists another consolidate QLS Y which compatible contains X then X̂ ⊆Y.

Clearly, X̂ =X for some consolidate QLS X. We do not know yet whether each QLS has a consolidation. This notion is unnecessary 

in consolidate QLSs, hence is in linear spaces. Further, ΩC 
( )n

s
 =ΩC(Rn).

For a QLS X, the set

( ){ }ˆ ˆ : .X
y r

F z X z y= ∈ ≤

is the floor of y in X̂ .

Now, let us give an extended definition of inner-product given in [8]. We can say that the inner product in the following definition 
may be seen a set-valued inner product on quasilinear spaces.

Definition 2.7 Let X be a quasilinear space having a consolidation X̂ . A mapping ⟨,⟩:X×X→Ω(K) is called an inner product on X if for 
any x,y,z ∈ X and α∈K the following conditions are satisfied :

 If x,y ∈ Xr then ⟨x,y⟩ ∈ ΩC(K)r≡ K,                                                               (19)

                ⟨x + y,z⟩ ⊆ ⟨x,z⟩ + ⟨y,z⟩,                                                                                 (20)

 ⟨αx,y⟩=α⟨x,y⟩,                                                                                                 (21)

 ⟨x,y⟩=⟨y,x⟩,                                                                                                 (22)

 ⟨x,x⟩ ≥ 0 for x ∈ Xr  and ⟨x,x⟩ = 0⇔x = 0,                                                (23)
 
 ‖⟨x,y⟩‖Ω(K) = sup{‖⟨a,b⟩‖Ω(K):a ∈ Fx X̂  ,b∈Fy X̂   },                                (24)

 if x ≤ y and u ≤ v then ⟨x,u⟩ ⊆ ⟨y,v⟩,                                                (25)

  if for any ε > 0 there exists an element xε ∈ X such that                (26)
      x ≤ y + xε and ⟨xε,xε ⟩ ⊆ Sε(θ) then x ≤ y.

A quasilinear space with an inner product is called an inner product quasilinear space, briefly, IPQLS.

Remark 2.3 For some x ∈ Xr, ⟨x, x⟩ ≥ 0 means ⟨x, x⟩ is non-negative, that is, the order "≥ " in the definition is the usual order on 
ΩC(K)r ≡ K. It should not be confused with the order "≤" on X.

Example 2.3 [7, 9] Let X be a linear Hilbert space. Then the space Ω(X) is a Hilbert quasilinear space by the inner-product defined by

{ }, : ,Xa b a A b B∈ ∈⟨A,B⟩Ω(X)= for A,B∈Ω(X).

Every IPQLS X is a normed QLS with the norm defined by

for every x ∈ X. This norm is called inner-product norm. Classical norm of IR [4] is generated by the above inner-product. Further 
xn→x and yn→y in a IPQLS then ⟨xn,yn ⟩→⟨x,y⟩.

A IPQLS is called Hilbert QLS, if it is complete according to the inner-product (norm) metric. For example, IR is a Hilbert QLS.

Quasilinear Structure of the Space of Complex Intervals
Let us impose an order relation on IC:

x≤y if and only if , , and , ,r r r r s s s sx x y y x x y y       ⊆ ⊆       

,x x x=
Ω(R)
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for x,y ∈ IC. Then "≤" is a partial order relation on IC. Further, consider following operations:

Proof. Verification of first five axioms to be a QLS is too straighforward. Further, the degenerate interval θ = [0,0] = {0}, is the 
identity element of the addition. Further, for 1,0 ∈ C and x ∈ IC, obviously, 1⋅x = x, 0⋅x = θ, and easily see that α⋅(βx) = (αβ)⋅x, and 
α⋅(x+y) = α⋅x + α⋅y. For α,β ∈ C and x ∈ IC, (α+β)x ≤ αx + βx,  

Let us determine regular and singular subspace of IR and IC. If x = [a,a] = {a}, a ∈ R is a degenerate interval, then x is regular and 
there is no regular element other then such types. Hence

An easy observation shows

and

Regular subspaces of IR and IC just are, or can be identified with, R and C, respectively.

 is a norm on IC. Perhaps, the more useful norm on IC is

Let us only verify the last two conditions to be norm for‖⋅‖2 . Let

{ }
( )

{ }

, , , ,

, ,

: , , ,

, ,

 : , , ,

r r s s r r s s

r r r r s s s s

r r r r s s s s

r r s s

r r s s

x y x x i x x y y i y y

x y x y i x y x y

a ib a x y x y b x y x y

x x x i x x

a i b a x x b x x

λ λ λ

λ λ

       + = + + +       
   = + + + + +   

   = + ∈ + + ∈ + +   

   ⋅ = ⋅ + ⋅   

   = + ∈ ∈   

and

 on IC where i=√(-1) and λ ∈ C.

Theorem 3.1 IC is a quasilinear space on the field C by the above relation and algebraic operations.

and

( ) [ ]{0} { , : , and }.
s

a b a b a b= ∪ ∈ < 

( ) { }{ }: ,
r

a ib a b= + ∈ 

( ) { }{ }:
r

a a= ∈ 

( ) {0} { , , :  and }.r r s s r r s ss
x x i x x x x x x   = ∪ + < <   

We can impose a lot of norm on IC. For example,

, ,
sup sup

r r s sa x x a x x
a a

   ∈ ∈   

= +

Last we should note the max-norm

is another important norm on IC.

, ,r r s sx x x i x x   = +    and , ,r r s sy y y i y y   = +   

be arbitrary elements of IC. If x°y, then , ,r r r rx x y y   ⊆    and , , .s s s sx x y y   ⊆    This implies
, ,

sup , sup ,
r r r r

r r r r
a x x a y y

a x x a y y
   ∈ ∈   

   = ≤ =     

and

Further,

For the last conditions of the norm, let ε>0 be arbitrary and there exists an element , ,r r s s Cx x x i x xε ε ε ε ε   = + ∈    

such that x°y + xε and ‖xε‖2≤ ε . The conditions indicates , , , and , , , ,r r r r r r s s s s s sx x y y x x x x y y x xε ε ε ε           ⊆ + ⊆ +           

1 1
, , , ,r r s s r r s sx x x i x x x x x x       = + = +       

  

2 2

2 2
, , , , .r r s s r r s sx x x i x x x x x x       = + = +       

  

, , max , , ,
R R

r r s s r r s sx x x i x x x x x x
∞ ∞

        = + =           

, ,
sup , sup ,

r r r r

r r r r
a x x a y y

a x x a y y
   ∈ ∈   

   = ≤ =   
  

2 2 2 2

2 2
, , , , .r r s s r r s sx x x x x y y y y y       = + ≤ + =       

      



Annex Publishers | www.annexpublishers.com                    
 

Volume 3 | Issue 1

7                 Journal of Biostatistics and Biometric Applications

This is a contradiction. Thus , , .r r r rx x y y   ⊆    If the case , Ú ,s s s sx x y y        is valid then by the similar way we
get , , .s s s sx x y y   ⊆     Consequently ( )2

, x  is a normed QLS.

On the other hand, it can be easily seen that

for any element , ,r r s sx x x i x x   = +     of IC. Hence IC is a consolidate QLS.
Now we shall present very important theorem for the space of complex intervals.

and

Now let us assume x≰y with the above conditions. This means , ,r r r rx x y y       or , , .s s s sx x y y       Suppose

, Ú , .r r r rx x y y       This gives a real number ,r ra x x ∈   such that , .r ra y y ∉   Since ,r ry y   is closed

,
( , , ) inf 0.

r r
r r

b y y
h a y y a b

 ∈ 

  = − ≠ 

By the hypothesis, for ( , , )
,

2
r rh a y y

ε
  =

there exists an element ,r rx xε ε ∈   such that , , ,r r r r r rx x y y x xε ε     ⊆ +      and

Thus , ,r r r ra y y x xε ε   ∈ +    since ,r ra x x ∈   . Then we can find ,r rb y y ∈   and ,r ra x xε ε ε ∈  

.a b aε= +

such that

Hence

( )

0 ( )

( , , )

, ,
( , , )

2

( , , )

2

r r

r r

r r

r r

a b a a b a

h a y y a

h a y y
h a y y

h a y y

ε ε

ε

ε

= − + ≥ − −

 ≥ − 

   ≥ − 

  = =

sup{ ( ) : , , } , ,r r r s s r r s sy y x x i x x x x i x x       ∈ ⊆ + = +       

Theorem 3.2 The space IC is inner product quasilinear space with Ω(C)-valued inner-product function defined by

, , , , , ,  

 , , , , ( , , , , )

r r s s r r s s

r r r r s s s s s s r r r r s s

x y x x i x x y y i y y

x x y y x x y y i x x y y x x y y

       = + +       

               = + + −               
(27)

 Proof. Since sum, difference and product operations of intervals is closed [5], we have that  , , , ,r r r r s s s sx x y y x x y y       + ∈          
and , , , ,s s r r r r s sx x y y x x y y       − ∈         . Thus, the equality (27) is well-defined, since ,x y∈   and  is a subspace of Ω(C). Let 
us show that this equality provides inner-product axioms:

 for elements , , , , ,r r s s r r s sx x x i x x y y y i y y       = + = +         where the multiplication of real intervals is in its usual sense [5].

- For the regular elements { } { }x a i b= +  and { } { }y c i d= + , , , ,a b c d ∈   we write 

, { } { },{ } { }
 { }{ } { }{ } ({ }{ } { }{ })
x y a i b c i d

a c b d i b c a d
+ +

= + + −

=

By the first condition of inner product on   we say that { }{ },{ }{ },{ }{ },{ }{ }a c b d b c a d ∈ ≡   and so ⟨x,y⟩∈ΩC (C)r≡C for 
any ⟨x,y⟩∈ΩC (C)r≡C.

2 2
2, , .

R R
r r s sx x x xε ε ε ε ε   + ≤    

2 2

2
, , , .

R R R
r r r r s sx x x x x x xε ε ε ε ε ε ε     ≤ = + ≤       



Annex Publishers | www.annexpublishers.com                    
 

Volume 3 | Issue 1

Journal of Biostatistics and Biometric Applications         
 

8

Hereafter, let us take , , , , , , , , , ,r r r r r r s s r r s sx x A x x A y y C y y D z z E z z F           = = = = = =             for elements 

Since A,B,C,D,E,F∈ΩC (R) and IR is a inner-product space,

, , , , ,   , ,r r s s r r s s r r s sx x x i x x y y y i y y and z z z i z z           = + = + = +            For any x,y,z ∈ IC

, ( ) ( ),

( ),
 ( ) ( ) [( ) ( ) ]

x y z A iB C iD E iF

A C i B D E iF
A C E B D F i B D E A C F

+ = + + + +

= + + + +

= + + + + + − +

, ( ) ( ) [( ) ( ) ]
( )

[( ) ( )] [( ) ( )]
  , ,

x y z A C E B D F i B D E A C F
AE CE BF DF i BE DE AF CF
AE BF i BE AF CE DF i DE CF
x z y z

+ = + + + + + − +

⊆ + + + + + − −
= + + − + + + −

= +

- For x,y ∈ IC and α∈C,

, ( ),
( ) ( ) [( ) ( ) ]

( ) ( ) [ ( ) ( )]
 ( )]
 ,

x y A iB C iD
A C B D i B C A D
AC BD i BC AD

AC BD i BC AD
x y

α α
α α α α
α α α α
α
α

= + +

= + + −
= + + −
= + + −

=

- For x,y ∈ IC,

 - For a regular element

 Therefore, ⟨x,x⟩≥0 for any x∈(IC )r. Further,

for any x∈IC.

, ,
  ( )
   ( )

 , .

x y A iB C iD
AC BD i CB AD
CA DB i DA CB

y x

= + +

= + + −
= + − −

= 〈 〉

2 2

{ } { },
, { } { },{ } { }

  { }{ } { }{ } ({ }{ } { }{ })
  { }.

x a i b
x x a i b a i b

a a b b i b a a b
a b

= +
〈 〉 = 〈 + + 〉
= + + −

= +

, 0 0x x x〈 〉 = ⇔ =

- Since IC is a consolidate quasilinear space, (IC ) ̂=IC and so

1 3 2 4 2 3 1 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

, sup{ : , }

sup{ : ( )}

sup{ ( ) : , , , }

sup{( )( ) : , , , }
sup{|| { } { },{ } { } ||: , , , }

sup{|| ,

x y t t x y

t t AC BD i BC AD

t t t t i t t t t t A t B t C t D

t it t it t A t B t C t D
t i t t i t t A t B t C t D

a b

|| 〈 〉 ||= ∈

= ∈ + + −

= + + − ∈ ∈ ∈ ∈

= + − ∈ ∈ ∈ ∈

= 〈 + + 〉 ∈ ∈ ∈ ∈

= 〈 1 2 3 4||: { } { } , { } { } }.x ya t i t F b t i t F〉 = + ∈ = + ∈  

- Suppose that x≤y and u≤v for

, , , , , ,

, ,   , , . 

,

, .

r r s s r r s s

r r s s r r s s

x x x i x x A iB y y y i y y C iD

u u u i u u E iF and v v v i v v G iH Then

x y A C B D
and
u v E G F H

       = + = + = + = +       
       = + = + = + = +       

≤ ⇔ ⊆ ⊆

≤ ⇔ ⊆ ⊆
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By the seventh axiom of inner-product on IR we say that AE ⊆ CG, BF ⊆ DH, BE ⊆ DG and AF ⊆ CH. Thus,

 - We show that x≤y, if for any ε>0 there exists an element

where Sε(θ) is closed ball of C: By the fact that ⟨xε,xε ⟩⊆Sε (θ) we have that

If it is considered that ‖A‖2≤ε and ‖B‖2≤ε, ‖xε ‖=‖A+iB‖≤‖A‖2+‖B‖2≤2ε. Thereby, we say that 𝑥≤𝑦 by the last condition
of norm on 𝕀ℂ.

, , ( ) .x x A iB A iB AA BB i BA ABε ε ε|| 〈 〉 ||=|| 〈 + + 〉 ||=|| + + − ||≤

Remark 3.1 It follows that if (IC )r ≡ C, i.e., x = {a} + i{b} for a,b ∈ R then the inner product (27) on IC coincides with the usual inner 
product on C.

In fact, from 27 we obtain the classical norm on IC defined by

Now let us show that the space IC is Hilbert space, i.e., IC is complete with the norm defined by (28).

1/2|| || || , || sup{ : , } x x x a ib a b= = + ∈ ∈ 

where , , , ,r r r r s s s sx x x x x x x x       = +        and , , , , .s s r r r r s sx x x x x x x x       = −       

(28)

Lemma 3.1 The inequality

h(αx,αy)=|α|h(x,y) (29)
holds for every element [ ], , , , .x x x y y y α = = ∈ ∈   

Proof. Let us consider the set of pairs (a1
(ε),a2

(ε) ) providing

( ) ( ) ( )
1 2, and , 1,2ix y a y x a a iε ε ε ε≤ + ≤ + ≤ = (30)

 and the set of this pairs’s norms Then we can write

Now let us take into account the set of pairs ( )( ) ( )
1 2,a aε εα α  providing the relations                                                          

(31)

In general, let ( ){ }( ) ( )
1 2,b bε ε

ε be a set providing the properties
( ) ( )
1 2,  with 0x y b y x bε εα α α α α α α≤ + ≤ + ≠ (32)

We obtain ( ) ( )
1 2,   b bx y y x
ε ε

α α
≤ + ≤ +

by using (11) and (12) from QLS axioms in (32). According to this, the pairs 
( ) ( )
1 2,b bε ε

α α
 
 
 

  is element of the set of pairs ( )( ) ( )
1 2, .a aε ε

 Then 

there exists an element ( ) ( ){ }0 0

( ) ( ) ( ) ( )
1 2 1 2, ,a a a aε ε ε ε

ε
∈ such that ( )0 0

( ) ( )
( ) ( )1 2
1 2, , .b b a a

ε ε
ε ε

α α
 

= 
 

 Thus 

 0

( )
( )1
1

b a
ε

ε

α
=  and 0

( )
( )2
2

b a
ε

ε

α
= . And then we write 

0

( ) ( )
1 1b aε εα=  and 

0

( ) ( )
2 2 .b aε εα=  

( ) ( )
1 2,x y a y x aε εα α α α α α≤ + ≤ +

⟨x,u⟩ = ⟨A + iB,E + iF⟩
          = AE + BF + i(BE - AF)
          ⊆ CG + DH + i(DG - CH)
          = ⟨y,v⟩.

, ,r r s sx x x i x x A iBε ε ε ε ε   = + = + ∈     such that

x ≤ y + xε and ( ),x x Sε ε
ε θ⊆

( )( ) ( )
1 2,a aε ε

{ }{ }
{ }

( ) ( )
1 20

( ) ( ) ( )
1 2

inf max , ( , )

inf 0 : , and , 1,2 .i

a a h x y

x y a y x a a i

ε ε

ε

ε ε εε ε
>

=

= ≥ ≤ + ≤ + ≤ =
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So, we say that

( ){ } ( ){ }( ) ( ) ( ) ( )
1 2 1 2, ,b b a aε ε ε εα α⊆

Also, it is obvious that

(33)

( ){ } ( ){ }( ) ( ) ( ) ( )
1 2 1 2, ,a a b bε ε ε εα α ⊆ (34)

 taking into account (31) and (32).

By (33) and (34), we say that the set ( ){ }( ) ( )
1 2,a aε εα α  with the set ( ){ }( ) ( )

1 2,b bε ε  providing properties in (31) and (32) is same.And also, 
since

we have

and

This take also into account, we can say

Theorem 3.3 IC is a complete quasilinear space, hence, IC is a Hilbert quasilinear space.

Proof. Let x(n) be a Cauchy sequence in IC, where 
( ) ( ) ( ) ( ) ( ), ,n n n n n

r r s sx x x i x x   = +     . Then, taking into account Lemma 3.1 and 
Proposition 2.1-ii), for every ε>0 there exists an n0∈N such that

( ) ( )( )
( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( , ) , , , , ,

, , , , , ,

, , , , ,

n m n n n n m m m m
r r s s r r s s

n n m m n n m m
r r r r s s s s

n n m m n n
r r r r s s s

h x x h x x i x x x x i x x

h x x x x h i x x i x x

h x x x x h x x x

       = + +       

       ≤ +       

     ≤ +     ( )( ) ( )

0

,

, ( , )

m m
sx

n m nε

 
 

< >

Therefore we say that

and

( )( ) ( ) ( ) ( ), , ,n n m m
r r r rh x x x x ε    <   

( )( ) ( ) ( ) ( ), , , .n n m m
s s s sh x x x x ε    <   

These show that the sequences (xr
(n) ) and (xs

(n) ) are Cauchy sequence in IR. Since IR is a complete metric space,

( ) [ ]( ) , ,n
rx a a n ∞→ →

and

( )( ) , , .n
sx b b n ∞ → → 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2, , , ,a a a a a aε ε ε ε ε εα α α α α= =

{ } { }( ) ( ) ( ) ( )
1 2 1 2max , max ,a a a aε ε ε εα α α=

{ }{ } { }{ }( ) ( ) ( ) ( )
1 2 1 20 0

inf max , inf max , .a a a aε ε ε ε

ε ε
α α

> >

=

( ) { }
{ }

{ }
( )

( ) ( ) ( )
1 2

( ) ( ) ( )
1 2

( ) ( ) ( )
1 2

, inf 0 : , and , 1,2

inf 0 : , and , 1,2

inf 0 : , and , 1,2

  , .

i

i

i

h x y x y b y x b b i

x y a y x a a i

x y a y x a a i

h x y

ε ε ε

ε ε ε

ε ε ε

α α ε α α α α ε

ε α α α α α α α ε

α ε ε

α

= ≥ ≤ + ≤ + ≤ =

= ≥ ≤ + ≤ + ≤ =

= ≥ ° + ° + ≤ =

=
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Using these limits, we define

[ ], , .x a a i b b = +  

From Lemma 3.1 and Proposition 2.1-(ii), we have

Hence

[ ]( ) ( ) ( ) ( ), , , , .n n n n
r r s sx x i x x a a i b b     + → +     

This shows that x is the limit of (x(n)) and proves completeness of IC because (x(n) ) was an arbitrary Cauchy sequence.    

6. An Application: Representations of some non-deterministic EEG Signals

 Sometimes, frequency and time components of a signal are not precisely known. But, we can precisely determine their upper and 
lower bounds. Further their samples are also not known and however we can restrict its frequency and time to two interval com-
ponents. Any model including such states can be represented by an interval signals. These or similar situations occurs also in EEG 
signal processing [12,13]. Processing of this kind circumstances need more extended mathematical analysis than classical analysis 
and algebra. Consider a discrete-time signal from an EEG detector [6], for more information about the signal processing) and as-
sume we know that the signal is a sinusoidal function sampled at 4 samples per period, for n∈N

1,sin and 0,  for Z.
2n n
nx n i x nπ = + − = ∈  

That is the output is the discrete-time interval signal:

[ ] [ ] 3( ) (...0,0, 1,0 ,1 1,sin ,  2 1,sin ,  3 1,sin ,...)
2 2nx x i i i iπ ππ   = = − + − + − + −      

where 1i = − ,complex unit. This produces a bounded uncertainty in the output. The time component of the signal is classical but 
the frequency component includes a bounded uncertainty. Because, for example, the frequency of the signal at time 2 may be zero 
or π or any value at the interval [-1,sinπ]. Processing of this kind signals produces many difficulties since they have no mature 
mathematical foundations in contrast to the classical signal processing. Suppose that this output is an impulse response of a system. 
In other words, let us assume it is a filter and let us try to determine which system produce this output:

This kind system is a mapping T from a discrete-time signals to the discrete-time interval-valued periodic signals since an impulse 
is a classical unit signal. A discrete-time signal f is a two-sided sequence (..., f-1, f0, f1,...) and its output under the  mapping T is in 
the from Tf=z. The impulse is the Kronecker delta sequence δ such that

1 , for 0
              

0 ,otherwisen

n
nδ

=
= ∈




or

0.  position
(...,0, 1 ,0,...).

th
δ =

Hence we should solve the equation Tδ=x in order to determine the system. Now we asserts that T is in a complex-interval infinite 
matrix form: Indeed, if

( ) [ ]( )
[ ]( ) ( )( )
[ ]( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

, , , , , ,

, , , , , ,

, , , , , ,

n n n n n
r r s s

n n n n
r r s s

n n n n
r r s s

h x x h x x i x x a a i b b

h x x a a h i x x i b b

h x x a a h x x b b

→ →

     = + +     

     ≤ +     

     ≤ +     
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0
0 0 0 0
0 [ 1,0] 0 0

,0 0 1 [ 1,sin ] 0
2

0 0 0 2 [ 1,sin ]
0 0 0 0

i

T i

i

π

π

 
 
 
 −
 
 = + −
 
 + − 
 
 
 

   

 

 

 

 

 

  

the matrix multiplication with impulse gives

[ ] [ ] 3( ) (...0,0, 1,0 ,1 1,sin ,  2 1,sin ,  3 1,sin ,...) .
2 2

T i i i i xπ πδ π   = − + − + − + − =      

We call this kind systems as a quasilinear systems and many interval matrix systems represents mentioned uncertainties. Their 
investigation needs a lot of new concepts and technics.

Conclusion
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