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Summary
We have presented in this paper alternative computation to arrive at results obtained in Lindsey and Altham (1998) on the use of the 
beta-binomial, the double binomial and the multiplicative binomial models to the Human Sex Ratio data. Our procedure estimates 
fewer parameters and thus the goodness-of-fit test statistics computed here are based on more d.f. The results obtained, using SAS 
PROC NLMIXED agree with those presented in the Lindsey et al. paper. Further, we extend the study to two additional distributions, 
namely, the Com-Poisson binomial and the correlated binomial distributions. Our results give the estimated probabilities under all the 
models considered here and we are able to compute the success probability under the multiplicative binomial model for the global data.
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Introduction

Questions of interest from previous studies are succinctly stated in Lindsey and Altham and include ’whether the probability that 
the child is a boy varies among families and whether it can vary over time within a family’. As argued in Lindsey and Altham, 
because the Geissler study results in an aggregated data, both questions may not be distinguishable and that they will inherently 
manifest themselves as overdispersion with respect to the binomial model. As presented in Lindsey and Altham, we will look at 
whether variability changes with family size.

Lindsey and Altham (1998) re-analyzed the human sex ratio data collected by Geissler (1889) [1,2]. The data relate to the distribution 
of the sexes of children in families in Saxony during 1876-1885. A reproduction of the data is also presented in Edwards (1958) 
for distribution of boys of size 2-13 [3]. We have in this paper further provided a presentation of the data arranged by family size 
and corresponding frequencies. The data has been arranged so that for instance the data used by Sokal and Rohlf (1969), p.80 can 
now be found in row F12 for n=12. Similarly, that used by Fisher (1958) for a family size of n=8 can be found in row F08 for n=8 
[4]. The number of children in each family therefore varies from 1 to 12, and is denoted by n in this paper. A detailed description 
of the data can be found in Edwards (1958) [3].

Lindsey & Altham (1998), employed the beta-binomial, the multiplicative and the double binomial models as overdispersed models 
for the data in Table 1. In their paper, the forms of the multiplicative and double binomial models employed were characterized 
with intractable normalizing constants  ( ), c nψ  and  ( ), c n π  respectively. Consequently, these models were implemented in Lindsey 
and Altham (1998) by utilizing a generalized linear model with a Poisson distribution and log link to the frequency data. This 
approach has earlier being similarly employed in Lindsey and Altham (1995) [1,9]. This approach, which employs joint sufficient 
statistics in both distributions was proposed in Lindsey and Mersch (1992) [11]. Thus, both distributions are fitted using a Poisson 
regression model having sufficient statistics from both distributions as explanatory variables with the frequencies being the mean 
dependent variables. For the Double binomial model (DBM), the sufficient statistics are ( ) logy y  and ( ) ( )logn y n y− −  . Similar 
sufficient statistics for the multiplicative binomial model (MBM) are y and ( )y n y−  with the offset being  log

n
Z

y
 

=  
 

 for both models. 
However, this approach is not efficient. Their approach fits the following model:

In this study, we shall compare the behaviors of the binomial model (BN) with those of five other models, namely, the beta-
binomial (BB) Skellam (1948); the multiplicative binomial (MBM)  Altham (1978), Elamir (2013);   the Com-Poisson Binomial 
(CPM) Borges et al. (2013), the double binomial (DBM) Lindsey and Altham (1995) and the correlated binomial Kupper and 
Haseman (1978) distributions [5-10].
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(1)

Girls Boys

n 0 1 2 3 4 5 6 7 8 9 10 11 12

F01 1 114609 108719 - - - - - - - - - - -

F02 2 47819 89213 42860 - - - - - - - - - -

F03 3 20540 57179 53789 17395 - - - - - - - - -

F04 4 8628 31611 44793 28101 7004 - - - - - - - -

F05 5 3666 16340 30175 28630 13740 2839 - - - - - - -

F06 6 1579 7908 17332 22221 15700 6233 1096 - - - - - -

F07 7 631 3725 9547 14479 13972 8171 2719 436 - - - - -

F08 8 264 1655 4948 8498 10263 7603 3951 1152 161 - - - -

F09 9 90 713 2418 4757 6436 5917 3895 1776 432 66 - - -

F10 10 30 287 1027 2309 3470 3878 3072 1783 722 151 30 - -

F11 11 24 93 492 1077 1801 2310 2161 1540 837 275 72 8 -

F12 12 7 45 181 478 829 1112 1343 1033 670 286 104 24 3

Table 1: Distribution of Boys in family sizes 2 to 12

resulting in, ( )( )1/ 1 expn lrπ = + − . Here, we see that the logit of the probability of “success” is a linear function of family size n. This 
approach is very similar to those employed in Lefkopoulou et al. (1989), where, 

(2)

The model in (1) is employed to model the probability of success for each of the distributions  considered in this study, the excep-
tion being the Com-Poisson  binomial model (CPM) described later in this paper [12].

Further, the dispersion parameters for each of the models are expressed as ( )0 1exp   , 2,  3,  . . . ,1 2.a na n+ =  The exception here being 
the correlated binomial (CBM) and the Com-Poisson binomial, because the dispersion parameters  iθ  and iv  in both models can 
take positive and negative values. 

The formulation of the success probability model and the dispersion parameter models are as formulated in Lindsey and Altham 
(1998) [1]. However, because of the joint sufficient statistics’  approach employed  in  their  paper, each  model so  formulated is 
based on thirteen parameters. In this study, the same models will be fitted, but with only four parameters, giving us more degrees 
of freedom for inference. Our models generate perfectly, the results in Lindsey and Altham (1998), even though we have employed 
only four parameters for each distribution [1]. We also examine the following variations of these models, for   2,  3 , . . .,1 2n=  
family sizes.

(a) The model that assumes that for all n, we have constant probability of ’success’ and constant dispersion parameter (ϕ is that for 
the double binomial for instance).  That is,

(b) The model that assumes in this case (Case II) that:

(c) In case III, we assume that:

(d) Case IV: This is the general case, where,

0 1log
1

n

n

lr nπ β β
π

 
= = + − 

 ( ) 0 ,nlogit π β=  and 0n aφ =

 ( ) 0 ,nlogit π β=  and 0 1n a naφ = +

 ( ) 0 1 ,nlogit nπ β β= +  and 0n aφ =

 ( ) 0 1 ,nlogit nπ β β= +  and 0 1n a naφ = +

( ) 0logit n Xπ β β= +
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Since the data is binary, a binomial model applied to the entire data (excluding family size of one) gives an estimated probability 
of males ’success’ to be 0.5150. The dispersion parameter estimate from this model ( 2 / . .)X d f  is 9117.9513 which is very much 
greater than 1, indicating a very strong over-dispersion in the data. Thus, the binomial model would not fit these data and we thus 
consider in the following sections, the five over-dispersed probability distributions employed in this study.

Where 0 < ψ  < 1 and  ω > 0. When ω =1 the distribution reduces to the binomial with π  =ψ  . If  ω=1, ,n →∞  and 0ψ → , 
then nψ µ→  and the MBD reduces to Poisson (μ).

Elamir (2013) presented an elegant characteristics of the multiplicative binomial distribution including its four central moments. 
His treatment includes generation of random data from the distribution as well as the likelihood profiles and several examples.

Following Elamir (2013), the probability π of success for the Bernoulli trial, can be computed from the following expression in (4) 
as [7]:

Lovison (1998) proposed an alternative form of the two-parameter exponential family generalization of the binomial distribution 
first introduced by Altham (1978) which itself was based on the original Cox (1978) representation as [6,13,14]:

The Multiplicative Binomial Model-MBM

with π defined as in (4), ψ therefore can be defined as the probability of success weighted by the intra-units association measure 
ω which measures the dependence among the binary responses of the n units. Thus if ω=1, then π=ψ and we have independence 
among the units.  However, if  1 ω≠ , then,   π ψ≠ and the units are not independent.

(4)

Where: 

(3)

(5)

The mean and variance of the MBM are given respectively as:

1 ( )E Y nπ=

2 2
1 2 1( ) (  1)Var Y n n n nπ π π= + − −

(6a)

(6b)

Where: 

(7)

and the k (.) are as defined previously in (5).

( )
( ) ( )

( ) ( )
0

1
, 0,1 , 2, , 

 1

n y y n yy

n n j j n jj
j

n
y

f y y n
n
j

ψ ψ ω

ψ ψ ω

− −

− −

=

 
− 

 = = …
 

− 
 

∑

( )
( )

1 ,
,

n

n

κ ψ ω
π ψ

κ ψ ω
−=

( ) ( ) ( )( )
1

0

, 1
n a

n a y y a n a yy
n

k

n a
y

κ ψ ω ψ ψ ω
−

− − + − −
−

=

− 
= − 

 
∑

( )
( )

,
,

n ii
i

n

κ ψ ω
π ψ

κ ψ ω
−=
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An approximation to the CPB distribution in the limit n → ∞ and with λ = nν p is given in Shmueli et al. (2005) [15]. Following 
Borges et al. (2013), if we let θn be defined as [8]:

The Beta-Binomial Distribution

With  ( )  0,1 π∈  and   Rν∈  . If ν = 1, the model reduces to the binomial distribution and values of v>1 indicate underdispersion, while 
values of v<1 similarly indicate overdispersion with respect to the binomial distribution.

and dividing both the denominator and numerator of the expression in (10) by a factor of  ( ) ( )1  !m m νπ−  , we thus have:

Where ψ < ∞ and 2 ( 1/ 1 )eψρ = +  .

The Beta-Binomial distribution Skellam (1948) has the probability distribution den-sity function [5]:

Where

and n is the family size   2,  3 , . . .,1 2n=  . Following  Lindsey and Altham (1998), the model in (8) can be parameterized as [1]:

(8)

(9)

The Com-Poisson Binomial (CPB) Model

The probability density function for the Com-Poisson Binomial distribution is given by:

(10)

1
n

n
n

πθ
π

=
−

(11)

(12)

where the normalizing term is defined as: 

( ) ( ) ( )
( )

, B
α β

α β
α β

Γ Γ
=

Γ +

( )
( )

( )0 

 1
| , , , 0,1 , , 

 1

v
n yy

v
n n kk
k

n
y

f y n p v y n
n
k

π π

π π

−

−

=

 
− 

 = = …
 

− 
 

∑

( )
( )( )
( )( )

 ,   1
; ,

,  1

B e y e n yn
f y

y B e e

ψ ψ

ψ ψ

π π
α β

π π

+ − + − 
=   − 

( )
( ) ( )

1| , , , 0,1 ,  , 0, 0,
,!

y

vf y n v y v
Z vy

θθ θ
θ

= = … > ≥

( )0 ! !

jn

v
j

Z
j n j

θ
=

=
−  

∑ (13)

( ) ( )
( )

 ,   
; , , 0,1 , , 

,  
n B y n y

f y y n
y B

α β
α β

α β
+ + − 

= = … 
 
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Methodology
For a single observation, the log-likelihoods for the multiplicative binomial, beta- binomial, double binomial, the Com-Poisson 
binomial, and the correlated binomial are displayed in expressions (16a) to (16e) respectively.

The various properties of the CPB or the Com-Poisson have been presented in various papers Borges et al. (2013), Shmueli et al. 
(2005), and Kadane et al. (2006) applied the CPB to the number of killings in rural Norway [8,15,16]. In this study, with θ defined 

as 0 1     n nθ α α= +  for the family sizes, then the estimated probabilities are obtained as 
ˆ

ˆ1
ˆ n

n
n

θπ
θ

=
+

. 

The Double Binomial Model (DBM)

In Feirer et al. (2013), the double binomial distribution was presented, having the pdf form [17]:

Correlated Binomial Model

A fetal death model proposed by Kupper and Haseman (1978), which is a generalization of the binomial model has the form [10]:

For  y = 0, 1, . . . , n, and following Feirer et al. (2013), its log-likelihood is presented in (16c).

(14)

(15)

In (15), θi is the covariance between any two responses within the same litter. The model above allows for negative intra-litter cor-
relation, as distinct from the other models considered that only allow for positive dispersion parameters.

Because of the bounds on θi for this model, it is modeled here as θi = b0 + ni bi,   2, 3, · · · ,1 2i=  rather than taking its exponent.

(16a)

(16b)

( )
( ) [ ]

( ) [ ]

1

1

0 

 /1
; ,

 /1  

yn yy

n jn jj
j

n
y n y

y
f y

n
j n j

j

φ φ

φ φ

π π
π φ

π π

−−

−−

=

   − −    =
   − −    

∑

( ) ( )
( )

( ) ( )2 2
22

| , 1 1 2 1
2 1

n yy in
f Y y n p p p y np y p np

y p p
θ−      = = − + − + − −    −    

( ) ( ) ( ) ( )

0

1 log log log log 1
n

n j j n jj

j

n n
LL y y n y

y j
ψ ω ψ ψ ω− −

=

    
= + + − − −    

    
∑

( ) ( )( ) ( ) ( ) ( )( ) ( )2 log log log 1 log  log log 1 log
n

LL y n y n
y

φπ φ π φ φπ φ π φ
     = + Γ + + Γ − + − − Γ + − Γ − Γ − + Γ                    

( ) ( ) ( ) ( )( )1
0

3 log 1 log log log log
1 1

jn
n jj

j

n n
LL y y n y n y y j n j

y y

φφπ πφ φ
π π

−−

=

        = + − + − − + − −        − −         
∑

( )
( )0

4 log ! ! log
! 1 !

n
i

i i i i v
j

LL y v y n y
j n

θθ
=

 
 = − − −    −   
∑

( ) ( ) ( )
( )

( ) ( ){ }2 2
22

5 log log log 1 log 1  2 1
2 1

in
LL y p n y p y np y p np

y p p
θ  

= + + − − + + − + − −  
−    

(16c)

(16d)

(16e)
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Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in SAS, which minimizes the func-
tion ( ), LL y− Θ  over the parameter space  numerically. The default integral approximations of the marginal likelihood in PROC 
NLMIXED is the Adaptive Gaussian Quadrature as defined in Pinheiro and Bates (1995) and the optimization algorithm adopted 
in this study is the Newton-Raphson iterative procedure (NEWRAP). Convergence is often a major problem here and the choice 
of starting values is very crucial [18]. For each of the cases considered here, we are able to achieve rapid convergence for all the 
distributions.

Results
As discussed earlier, following Lindsey & Altham, we model the probability, πn as a function of family size n, viz ( ) 0 1logit    .n nπ β β= +  
Similarly, the corresponding dispersion parameters are also modeled as: ( ) 0 1    log nω α α= + . Thus, for the multiplicative binomial, for 
instance, ( )  exp lpω=  , and both are functions of family size n. Further, for each model, we are estimating only four parameters 
where for instance, for the beta-binomial model for example, we are estimating only  { }0 1 0 1,  ,  ,  α α β β  as compared to 13 parameters 
that were estimated in Lindsey and Altham paper.

Parameters I II III IV

Beta-Binomial Model

0α̂ 4.5817 (0.0362) 5.3977 (0.1248) 4.5826 (0.0362) 5.3954 (0.1248)

1α̂ - -0.1100(0.0143) - -0.1096 (0.0143)

0β̂ 0.0600(0.0011) 0.0599 (0.0011) 0.0497 (0.0026) 0.0498 (0.0026)

1̂β - - 0.0018 (0.0004) 0.0018 (0.0004)

-2LL 4180.8 4118.6 4162.4 4100.8

X2 194.0652 126.3841 174.8058 108.4632

G2 187.6311 125.5495 169.2988 107.7504

Multiplicative Binomial Model

0α̂ -0.0196 (0.0007) -0.0055(0.0020) -0.0195(0.0007) -0.0058 (0.0020)

1α̂ - -0.0019 (0.0003) - -0.0019 (0.0003)

0β̂ 0.0573(0.0011) 0.0573(0.0011) -0.0507(0.0025) 0.0522 (0.0025)

1̂β - - 0.0011(0.0004) 0.0009 (0.0004)

-2LL 4159.4 4103.2 4151.2 4098.4

X2 171.3320 110.7833 162.8512 106.0609

G2 166.2496 110.1267 158.1647 105.3662

Double-Binomial Model

0α̂ -0.0318(0.0014) 0.0256 (0.0032) -0.0317(0.0014) 0.0256 (0.0032)

1α̂ - -0.0123 (0.0006) - -0.0123 (0.0006)

0β̂ 0.0601 (0.0011) 0.0598(0.001) 0.0499 (0.0026) 0.0498 (0.0026)

1̂β - - 0.0018 (0.0004) 0.0018 (0.0004)

-2LL 4525.0 4143.4 4506.8 4125.6

X2 562.2668 152.0558 541.8158 133.5381

G2 531.9262 150.2028 513.7150 132.4454

In Table 2 are presented the parameter estimates and their standard errors (in parentheses) under the five models for cases I to IV 
[19-21]. For the full models (Case IV), we see that only four parameters are estimated for each model in contrast to Lindsey and 
Altham (1998) thirteen parameters [1].
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Com-Poisson Binomial Model-CPM

0α̂ 0.9477 (0.0021) 1.0256(0.0050) 0.9479 (0.0021) 1.0247 (0.0051)

1α̂ - -0.0141 (0.0008) - -0.0140 (0.0006)

0β̂ 1.0595 (0.0011) 1.0589 (0.0011) 1.0499 (0.0027) 1.0533 (0.0027)

1̂β - - 0.0017 (0.0004) 0.0010 (0.0004)

-2LL 4396.8 4110.8 4381.6 4105.6

X2 424.1706 118.6071 407.2423 113.1593

G2 403.7245 117.7763 388.4260 112.4623

Correlated Binomial Model-CBM

0α̂ 0.0025 (0.0001) 0.0005 (0.0003) 0.0025 (0.0001) 0.0497 (0.0026)

1α̂ - 0.0003 (0.00004) - 0.0018 (0.0004)

0β̂ 0.0560 (0.0011) 0.0599 (0.0011) 0.0497 (0.0026) 0.0005 (0.0003)

1̂β - - 0.0018 (0.0004) 0.0003 (0.00004)

-2LL 4185.6 4123.8 4167.2 4105.8

X2 200.9393 133.6860 181.5540 115.5038

G2 192.5759 130.6794 174.1174 112.7036

π̂ 0.5150

θ 0.0025

The 2LL−  values for the beta-binomial in case IV were 2174100.8 but we have reported this simply as 4100.8. That is, we are 
reporting only the last four digits. In each case, the values of 217 had been truncated for brevity only. What is obvious from Table 
2, is that, irrespective of the model being employed, the data is better modeled with a variable dispersion parameter, that is, cases 
II and IV. In other words, models that assume uniform dispersion parameter (within a given distribution  here) are not satisfac-

tory for the data. The 2LL−  and goodness-of-fit test statistics, the Pearson’s  
( )288

2

1

ˆ
ˆ

i i

i i

y m
X

m=

−
=∑  and the likelihood-ratio test  

88
2

1

2 log
ˆ

i
i

i i

yG y
m=

 
= −  

 
∑  all indicate that the models in cases II and IV are much better. Further, of the two parsimonious models in

cases II and IV, model IV which is equivalent to Lindsay and Altham (1998) model is most parsimonious. For instance, for the 
beta-binomial model, the difference in G2 for the two models is 125.5495 − 107.7504 =17.7991 on 1 d.f., (G2 rather than X2  is used 
here because of its partitioning property over X2) which clearly indicates that β1 is important in the model, given that α0, α1 and β0 
are already in the model. Consequently, we would focus our attention on models in case IV for all the distributions.  

Table 2: Parameter Estimates for the five Models

Parameters I II III IV

For these five models, the best three models in case IV that best fit our data are in the order (a) Multiplicative binomial, (b) The 
beta-binomial and (c) the Com-Poisson binomial distributions. However, we present in Table 3, the estimated probabilities for 
each family size under each of these models.

In Table 3 are presented the estimated probabilities from each of these models. We present the computation of the first probabilities 
for family size n=6 as an example. For the beta-binomial, this equal ( )1/ 1  exp 0.0498  0.0018 * 6   0.5151ˆiπ = + − − =   .

Similarly, under the multiplicative binomial model, ( )( )6 1/ 1 exp 0.05219 0.000864 6 0.51434ψ̂  = + − − × =   .
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However, this is not the required probability. The required probability, 1
6π  can be computed using (7) as: 

( )

1
6

1

0.882400.51434 0.51497
0.8813

ˆ
2

n

n

K
K

π ψ
−

    = = =     
. We present in Table 4, the calculated values necessary to compute π1, π2

and the variance under the multiplicative binomial model. The table also includes computed estimated variances as well as the 
dispersion parameter ω. We shall refer to this table again later. Clearly, the beta-binomial, the double binomial and the correlated 
give estimated global family size probabilities that are very similar. Of the three models here, the beta-binomial fits best and we 
see that the estimated probabilities under the BB agree with those presented in Lindsey and Altham (1998), even though we have 
employed only four parameters to fit the models [1].  The Com-Poisson binomial seems to be underestimating the global prob-
abilities slightly, but seems to fit the model better than the DBM and the CBM.

Family
Size

ˆnπ

BBD MBD DDM CPB CBM

2 0.5133 0.5135 0.5133 0.5134 0.5133

3 0.5138 0.5139 0.5138 0.5137 0.5138

4 0.5142 0.5142 0.5142 0.5139 0.5142

5 0.5147 0.5146 0.5147 0.5141 0.5147

6 0.5151 0.5150 0.5151 0.5143 0.5151

7 0.5156 0.5154 0.5155 0.5146 0.5156

8 0.5160 0.5159 0.5160 0.5148 0.5160

9 0.5165 0.5165 0.5164 0.5150 0.5165

10 0.5169 0.5171 0.5169 0.5153 0.5169

11 0.5173 0.5177 0.5173 0.5155 0.5174

12 0.5178 0.5184 0.5177 0.5157 0.5178
Table 3: Estimated success probabilities under the five models

Similarly, the estimated 1
nπ  obtained (first probability) under the multiplicative binomial model are very consistent with those 

from the BB. The questions posed in Linsey and Altham regarding the good fit of the multiplicative binomial model, namely:

n Kn Kn-1 Kn-2 Ψ̂ 1π̂ 2π̂ var ˆnω

2 0.99526 0.99538 1.00000 0.51348 0.51354 0.26492 1.0295 0.99050

3 0.98313 0.98343 0.98905 0.51369 0.51385 0.26547 2.3422 0.98868

4 0.96124 0.96177 0.96838 0.51391 0.51419 0.26606 4.1919 0.98686

5 0.92770 0.92849 0.93603 0.51412 0.51456 0.26670 6.5829 0.98503

6 0.88132 0.88240 0.89076 0.51434 0.51497 0.26738 9.5200 0.98321

7 0.82189 0.82327 0.83227 0.51456 0.51542 0.26811 13.0090 0.98139

8 0.75033 0.75198 0.76141 0.51477 0.51591 0.26891 17.0567 0.97956

9 0.66872 0.67062 0.68020 0.51499 0.51645 0.26977 21.6707 0.97774

10 0.58022 0.58229 0.59173 0.51520 0.51705 0.27070 26.8602 0.97592

11 0.48876 0.49093 0.49992 0.51542 0.51771 0.27172 32.6362 0.97409

12 0.39862 0.40079 0.40907 0.51564 0.51844 0.27285 39.0116 0.97227
Table 4: Multiplicative Model necessary Values

(b) Can more be said about the parameters than the empirical statement that the probability and dispersion both increase with 
family size?

(a) Does it (i.e. the multiplicative model) have some biological significance similar to the idea for the beta-binomial model of the 
Bernoulli probability varying across the population according to a beta distribution?

Based on our ability to now be able to compute the central moments of the multiplicative Binomial model (Elamir (2013)), the ψ in 
our model specification in (3) is not necessarily equivalent to the desired πn, our ability to now be able to compute the ,  1 , 2, 3, 4i

n iπ =  
and in particular, the case when i = 1 which corresponds to our Bernoulli or BB parameter πn from expressions in (7) answers the 
question poised in (a) [7]. Thus, 1π  is considered to be the ’probability of success while ψ is the probability of success weighted by 
the intra-association measure ω given the dependence among the binary responses of the units. 
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As to the second question, the results of ˆnω  in Table 5, indicate that 1,ˆ   n iω < ∀  and decreases as the family size increases. Thus, 
while 2 0. 50ˆ 990ω = , that for 12 0. 27ˆ 972ω = .  These indicate decreasing variability as family size increases. On the other hand, for the 
beta-binomial, both probability and dispersion parameter increase with family size. For values of n small, estimates of ω are very 
close to 1, indicating closeness to being independent observations and can be appropriately modeled with the binomial distribu-
tion.

Family
Size 

n

Dispersion Estimated Parameters

BB MBD DDM CPB CBM

2ρ̂ ˆiω îφ îν îθ

2 0.0056 0.9905 1.0011 0.9968 0.0011

3 0.0063 0.9887 0.9889 0.9828 0.0014

4 0.0070 0.9869 0.9769 0.9688 0.0016

5 0.0078 0.9850 0.9650 0.9549 0.0019

6 0.0087 0.9832 0.9532 0.9409 0.0022

7 0.0097 0.9814 0.9416 0.9270 0.0025

8 0.0108 0.9796 0.9301 0.9130 0.0028

9 0.0120 0.9777 0.9188 0.8990 0.0030

10 0.0134 0.9759 0.9076 0.8851 0.0033

11 0.0149 0.9741 0.8966 0.8711 0.0036

12 0.0166 0.9723 0.8856 0.8572 0.0039
Table 5: Dispersion Estimated Parameters

Goodness-of-fit Statistics
We present in this section results of goodness-of-fit tests for all the models considered in this study. From the global model for 
each distribution, and a given estimated set of parameters, the probabilities of   0,1 , . . . , Y n=  and corresponding expected values are 
computed from the log-likelihood equations. For example, for the multiplicative model, this is, for a given family size n, the LL1 
is as presented earlier in (16a). Hence, the corresponding probabilities are computed for   0,1 , . . . , Y n=  as ( ) ( )      ˆ  exp 1yp P Y y LL= = =  
and the corresponding expected values are   ˆ ˆy ym Np=  , where N for the family of size 12 for instance is 6115. We give in Table 6, 
the computed probabilities, the expected values, and contributions to the likelihood-ratio test statistic G2 and Pearson’s X2 for the 
multiplicative binomial for   2,  3,  4   1 2n and n= = . Here, G2 and X2 are defined as

where ˆ ˆi im Np=  are the expected values as defined above for each family size n .

Also, in Table 5, the computed dispersion parameters for the double binomial, ϕ and the Com-Poisson binomial, ν, indicate de-
creasing dispersion parameters as the family size increases. For both the beta and correlated binomial, the dispersion parameters 
however, increase with family size.

88
2

1

2 log
 ˆ

i
i

i i

yG y
m=

 
=  

 
∑  ; ( )288

2

1 ˆ
 

 
ˆi i

i i

y m
X

m=

−
=∑

From Table 6, our computations for the G2 and X2 exclude the case when n =1, that is, family size of 1. Thus, we have the computa-
tions over 88 observations only. Note that for each n, the cumulative sum of probabilities (designated here by yp∑ ) sums to 1 for 
each family size n. We are re-assured that for a given n these probabilities sum to one. We have presented the results for n = 2, 3, 
4 and n = 12 only. The sample sizes for n = 2, 3, 4, 12 are respectively 179,892; 148,903; 120,137; and 6,115. The expected values 
under each N are provided under the column labeled ˆ ym  . This approach is employed for all the models considered in this study 
and in Table 7 are the resulting GOFs for all the five distributions under case IV.

Table 7 gives the GOF for the five models (in comparison to the binomial model) and results here demonstrate that while the mul-
tiplicative binomial model is best, it is however not much better than the beta-binomial model. However, since the multiplicative 
model is not much difficult to model than the beta-binomial, it would be better to actually employ it. Our results in other studies 
regarding the two models suggest that the MBD may be a better choice. Clearly, both the BBD and the MBD show considerable 
improvements in model fits than the binomial model.
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n y ˆ yp ˆ yp∑ ˆ ym 2X∑ 2G∑ ˆnω

2 0 0.2378 0.2378 42783.3261 0.1374 153.4851 0.9905

2 1 0.4973 0.7351 89453.4146 0.7835 -326.6974 0.9905

2 2 0.2649 1.0000 47655.2593 1.3462 1.3460 0.9905

3 0 0.1170 0.1170 17418.3948 1.3776 -45.4121 0.9887

3 1 0.3624 0.4793 53957.9978 1.9069 -382.8778 0.9887

3 2 0.3828 0.8621 56996.6365 2.4904 -17.5679 0.9887

3 3 0.1379 1.0000 20529.9709 2.4953 2.4951 0.9887

4 0 0.0581 0.0581 6977.4982 2.5959 55.5992 0.9869

4 1 0.2361 0.2941 28359.9063 4.9596 -459.8425 0.9869

4 2 0.3694 0.6636 44383.7008 8.7340 362.5188 0.9869

4 3 0.2639 0.9274 31698.7478 8.9769 187.2663 0.9869

4 4 0.0726 1.0000 8717.1469 9.8886 9.8873 0.9869

. . . . . . . .

. . . . . . . .

. . . . . . . .

12 0 0.0004 0.0004 2.5561 90.9736 91.2014 0.9723

12 1 0.0039 0.0043 23.9718 90.9736 91.2578 0.9723

12 2 0.0178 0.0222 108.9954 91.2026 81.4994 0.9723

12 3 0.0520 0.0741 317.7147 94.3684 21.3468 0.9723

12 4 0.1081 0.1823 661.2655 94.4838 38.9307 0.9723

12 5 0.1693 0.3516 1035.2798 94.4888 34.3761 0.9723

12 6 0.2044 0.5560 1250.1793 101.3803 226.7445 0.9723

12 7 0.1919 0.7479 1173.2732 104.5803 107.4552 0.9723

12 8 0.1389 0.8868 849.2952 105.0653 67.3537 0.9723

12 9 0.0756 0.9624 462.4465 105.5884 98.9780 0.9723

12 10 0.0294 0.9918 179.7935 105.5965 101.3991 0.9723

12 11 0.0073 0.9991 44.8135 105.5973 101.7729 0.9723

12 12 0.0009 1.0000 5.4154 106.0609 105.3662 0.9723

12 12 0.0009 1.0000 5.4154 106.0609 105.3662 0.9723
Table 6: Bayo Lawal

Model d.f G2 X 2

Binomial 85 3551.857 3807.590

Beta-B 83 107.7504 108.4632

MBM 83 105.3662 106.0609

DBM 83 132.4454 133.5381

Com-PB 83 112.4623 113.1593

CBM 83 112.7036 115.5038

Table 7: Models’ GOF test statistics

Conclusion
Our results here agree with those in Lindsey and Altham (1998) that the ”multi- plicative  model fitted somewhat better than did 
the beta-binomial” [1]. Our procedure here estimates fewer parameters than those employed in Lindsey and Altham (1998) and 
the optimization techniques open to us with SAS PROC NLMIXED, makes the use of this procedure much easier to use [1]. The 
implementation and use of more models in this study gives a broader perspective on models used for data having binary outcomes, 
especially as are being applied to the Human Sex Ratio Data. The SAS programs employed for this analysis are available from the 
author.
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