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The classical Fisher exact test [1], which is unconditionally the uniformly most powerful unbiased (UMPU) test, requires 
randomization at the critical value(s) to be of size α. Obviously, one needs a non-randomized version of this. Rejecting 
the null only if the test-statistic’s outcome is more extreme than the critical values, reduces the actual size considerably. 
The modified Fisher exact test introduced in [2] additionally rejects the null when the test attains the critical value c(t) 
and the randomization probability γ(t) (that depend on the total number of successes T) exceeds a threshold γ0, which is 
determined such that, for all values of the nuisance parameter, the size of the unconditional modified test is smaller, but 
as close as possible to α. This greatly improves the size and power of the test as compared to, for example, the conservative 
nonrandomized Fisher exact test, while controlling the Type 1 error rate. 

Without corresponding p-values and confidence intervals, however, the test is of limited practical use. This paper aims to 
address this deficiency, providing associated agreeing test-based two-sided p-values for H0: θ=θ0 and two-sided confidence 
intervals for θ0 (the log odds-ratio) as well as the power of this, non-conservatively sized test. A SAS IML macro is provided 
in the appendix, and an R-package will shortly be released. Woolf ’s asymptotic test closely resembles this test but does not 
strictly control the Type 1 error rate. Currently used exact tests, are potentially disagreeing, may not control the Type 1 
error or are overly conservative in size, an example of which is the “exact” test implemented in SAS Proc FREQ, where the 
p-value is constructed as the sum of less or equally likely conditional outcomes. Besides, this exact test is less powerful than 
the proposed modified Fisher exact test.

Keywords: Modified Fisher Exact; Test-based p-values; Test-based Confidence Intervals; Power; Neyman-structure; 
Uniformly most powerful unbiased tests
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Introduction

The Fisher exact test [1] for testing equality of two-binomial success probabilities is one of the most applied tests in biostatistical 
sciences. While some seem to think it is just a conditional test, it is the uniformly most powerful test among the unbiased tests [2], 
a property first proven by Tocher [3], and well described by Lehmann [4]. A test is unbiased if it is of size α, and has power greater 
or equal than α. Although not a compelling property, it is natural to require that the probability of a false positive should be smaller 
than that of a true positive. Suissa and Shuster [5] argue that a test can be more powerful once you permit it to have a power less than 
the nominal level of significance locally for alternatives that are not of interest, i.e., are not clinically relevant treatment differences. 
However, one could then easily counter argue that, if this is the case, the null hypothesis is ill-defined, and should be defined as the 
odds ratio being smaller than the minimum clinically relevant odds ratio – at which point unbiasedness is again in play.

The downside of the Fisher exact test in this theoretical context is that it is of limited practical use, primarily since it requires 
randomization at the critical values. As such, it does not have a natural accompanying p-value and confidence interval. Many 
suggestions to construct a non-randomized version of the Fisher exact test and corresponding p-values and confidence intervals 
have been made. Boschloo [6] suggested to reject based on conditional p-values using raised conditional nominal levels, such that 
the overall level is as close to (but smaller or equal to) α as possible. McDonald et al. [7] suggested raising the overall unconditional 
size, such that the size of the non-randomized Fisher exact test is a close to (but smaller or equal to) α as possible. A practical and 
much advocated alternative is the use of mid p-values, introduced by Lancaster [8] and first applied to 2x2 contingency tables by 
Haber [9]. Upton [10] and Lydersen and Laake [11] also both advocate the mid-p-value associated with the Fisher exact test. The 
recognized drawback of the mid-p-value is, like with Pearson’s Chi-square test [12] although to a much lesser extent, that the size 
is not guaranteed to be below the nominal level of significance α. 

The contemporary and much used p-values and confidence intervals are those implemented in software packages, such as SAS Proc 
FREQ. This SAS procedure has an exact option where the two-sided p-value is constructed as the sum of the probabilities of outcomes 
that are less or equally likely than the observed response, conditionally on the total number of responses. The confidence interval for 
the odds ratio is, however, not constructed utilizing this p-value but instead uses one-sided equal tail p-values to extract confidence 
limits. Consequently, its p-value and confidence interval are potentially disagreeing. It generally also offers the well-known asymptotic 
version of p-values and confidence intervals introduced by Woolf [13]. The latter, while easily constructed as it is based on a simple 
closed formula, is not controlling the Type 1 error rate, although p-values and confidence intervals are by definition agreeing. 

In this paper we revisit the modified Fisher exact test introduced in [2] and propose associated p-values and confidence intervals 
that are agreeing by definition, as they are both fully test-based. The test is derived from the randomized Fisher exact test by only 
rejecting the null if, in case the test-statistic attains the critical value, the randomization probability exceeds a certain limit, γ0, 
which is determined such that the maximum size is as large as possible but smaller than the required nominal level α. As p-values 
and confidence intervals must be, by regulatory guidance, two-sided, the focus will only be on the two-sided testing problem H0: 
θ=θ0 versus H1 : θ≠θ0, where θ is the log odds ratio. A SAS/IML macro is provided in the appendix and a R-package will shortly 
be available that both will provide associated p-values for any null (not just H0 : θ=1), two-sided 1-α confidence intervals for the 
odds ratio ( ), a plot of the size of the test as a function of the nuisance parameter which can be used as a diagnostic tool, and 
the power of the test. This test will be compared to Woolf ’s asymptotic test as well as the popular “exact” test implemented in SAS 
Proc FREQ and other software packages. 

In Section (The Two-Sided Fisher Exact Test) we will describe the two-sided Fisher exact test and how to obtain its critical values 
and associated randomization probabilities. Next, in Section (The Modified Two-Sided Fisher Exact Test), we re-introduce the 
modified Fisher exact test [2] and explain how to derive γ0 numerically. In subsequent sections we compare its size (Section - Size 
Comparisons to Other Contemporary Tests), test-based confidence limits and p-values (Section p-Values and Confidence Limits), 
and its power (Section Power Comparison) against some if it’s contemporary popular alternatives. Discussion and conclusions are 
presented in Section (Discussion and Conclusion) and a SAS IML macro is provided in the Appendix. 
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The Two-Sided Fisher Exact Test

Tocher [3] proved that the Fisher exact test is uniformly most powerful among all unbiased test of nominal level α. The general line 
of reasoning, for ease of discussion restricted to two-binomials (but extendable to the contingency table approach), is as follows. 

Let, respectively, U and V be independent binomial variables, with U~Bin(m, π1) and V~Bin(n, π2), and let T=U+V be the total 
number of successes. For constructing a confidence limit, we are interested in testing the two-sided hypothesis H0: θ = θ0 against 
H1: θ ≠ θ0, where θ is the log odds ratio, i.e., θ=log (π1/ (1- π1)) /(π2/(1-π2)). As the power of any test φ in the case of a family 
of exponential distributions must be continuous, any unbiased test must be α-similar, i.e. Eπ(φ) = α for any π= (π1, π2) on the 
boundary ΘB= {(π1, π2) with π2= π1/ (π1+(1- π1) )}. Since T is a complete-sufficient statistic for π є ΘB, any α-similar test must, in 
its turn, have Neyman-structure, i.e. must be conditional of size α, as Eπφ (U,T) = Eπ (E φ (U,T) | T) = α implies E(φ(U,T)|T)=α (
π є ΘB). Using the Neyman-Pearson Fundamental Lemma, conditionally on T, the Fisher exact test φ* rejecting for extreme values 
of U given T, i.e.

                                       (1)

is, uniformly most powerful among the unbiased tests. But, with π є [0, 1]2 and θ=log{π1/(1-π1)}/{π2/(1-π2)} denoting the log odds 
ratio, we have 

φ* (U,T) =  (Eθφ*(U,T) | T) ≥ Eπ(Eθφ(U,T) | T) = φ (U,T), 

i.e., the Fisher exact is also unconditionally more powerful than any other unbiased test. Please note that the distribution of U given 
T is the non-central hypergeometric with θ as canonical parameter, i.e. 

       (2) 
where

where 

Note that 

        (3)

The randomizations at the critical values and the critical values themselves need to be determined such

, i.e conditional of size α, and

, for the test to be unbiased, i.e.   for 

By interchanging integration and differentiation, equation (b), using (3), leads to

(c)                                                                                                         (4) 

.
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which, in its turn, leads to
(1)  , and

(2)   
 

This yields as a solution for  given 

 
For t=0, γ1= γ2= α/2, (and c1=c2=0), and for t=1 straightforward calculation lead to γ1= γ2=α and c1=0 and c2=1. Similarly, for t=n+m 
we have γ1= γ2=α/2 (and c1=c2=m), and for t=n+m-1 we have γ1= γ2=α and c1=m-1 and c2=m. A proof for the existence of an UMPU 
test of the form (a) has been provided by [14].

That the test is unique can be seen from equation (a) and (c) as follows. A different test would need to have different c1 and c2 as (γ1, 

γ2) are uniquely determined by c1 and c2. Increasing the acceptance region on both ends would lead to a size < α, while decreasing 
it on both ends would lead to a size > α. So, the only option remaining is to shift the acceptance region to the left or to the right. 
This, however, would have to be done by shifting equal probability mass from one side to the other to maintain the size α. But this 
would lead to a decrease or increase  so that equation (c) is no longer valid. 

To numerically identify ci and γi (i=1,2) we search for a combination of c1 and c2 for which is in [0,1]x[0,1], starting at 
the α/2 and 1- α/2 percentiles of the non-central hypergeometric distribution and then “circling” around that in ever larger getting 
squares until the solution is identified. An example of these critical values and associated randomization probabilities is given in 
Table 1. 

T c1 γ1 c2 γ2

0 0 0.025 0 0.025
1 0 0.05 1 0.05
2 0 0.15 2 0.09
3 0 0.6 3 0.18
4 1 0.178 4 0.349
5 2 0.005 4 0.005
6 2 0.349 5 0.178
7 3 0.18 6 0.6
8 4 0.09 6 0.15
9 5 0.05 6 0.05

10 6 0.025 6 0.025

Note: the table in [2] was incorrect. 
Table 1: Critical values and associated randomization probabilities 
for the two-sided hypothesis testing problem with n=4 and m=6
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The Modified Two-Sided Fisher Exact Test

The modified Fisher exact test differs from the randomized Fisher exact test in that at the critical values the hypothesis is only 
rejected if the probabilities  (i=1,2) exceed a certain threshold γ0, i.e.
 

where is the indicator-function. The value of γ0 is chosen such that the size of the test is as large as possible but less than or 
equal to α. The size of this test for testing H0: θ = θ0 is given by 

which is a function of the nuisance parameter π1. To find the maximum size as a function π1, 3 numerical approaches can be 
adopted 

(1) Using a selected set of different starting values, apply SAS IML procedure NLPTR [15] for each and then take the maximum of 
these local extrema. The NLPTR procedure is a trust region method to identify the optimum of a function. This procedure is slow.

(2) Using a selected number of points (e.g. 0.1 to 0.9 by 0.1) identify which has the maximum size and use this as the starting value 
for the NLPTR subroutine.

(3) As 2, but don’t use the NLPTR subroutine. Instead evaluate the size around the point with the maximum size in ever smaller 
intervals and update the maximum point at each round. We refer to this simple approach as the “zoom-in” approach. In practise, 
it is generally the quickest approach. The number of evaluations can be chosen, the default we use is 19 (starting at 0.05, 0.1, 0.15, 
…, 0.95). 

The best way to be sure we have not identified a local optimum, is to plot the size of the test, particularly at the lower and upper
bound of the 95% confidence interval (see Section - Size Comparisons to Other Contemporary Tests).

Having obtained the size of the test, i.e.  we need to identify that  that yields the largest size smaller 
than α. This is accomplished by sorting the 2*(m+n+1) critical values (i=1,2 and t=0, …, n+m) by their randomization 
probabilities  and using a bisection method over these critical values to identify the optimum Note that is not 
unique but is an left-closed, right open interval between two ordered critical values. 

Size Comparisons to Other Contemporary Tests

We shall compare the size of the modified Fisher exact test as a function of the nuisance parameter π1 (where π2= π1/ (π1+(1- π1) 
θ0) to the following tests

1. The conservative Fisher exact test, rejecting only if the number of responses exceed the critical value, i.e. 

                        (5)
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Confidence limits will be test-based (see Section p-Values and Confidence Limits)

2. The asymptotic test by Woolf [13], i.e. reject based on the Wald statistic with the OR estimated by 

  and the SE (log (  

and reject if  ≥ z1-α/2. Rather than adding 0.5 for all 4 terms, u, v, m-u and n-v, as suggested by Hadane [16], we 

only replace zero values of u, v, m-u or n-v by 0.5. Confidence limits are then given by 

3. The test based on the p-value constructed as the sum of all conditional probabilities (1-b) of outcomes less likely than or equally 
likely as the one observed, that is reject if

   p-value = , 

where, with u being the number of responses observed, 
 

     (6) 

which is the exact p-value SAS Proc FREQ is providing. Confidence limits are, however, constructed using equal-tail one sided 
p-values, i.e., the confidence limit for the upper and lower 1- α confidence limits are the solution of, respectively, 

 α/2    and     α/2 

Some examples of the size as a function of the nuisance parameters and for exp(θ0)=1 and exp(θ0)=2 are given in Figures 1,2 and 3. 
Of note is that (1) the modified Fisher exact generally outperforms the other tests, (2) the test based on the exact p-value provided 
by SAS Proc FREQ is fairly conservative, and (3) the Woolf ’s asymptotic test for larger samples is most similar to the modified 
Fisher exact test, but does not strictly control the Type 1 error as witnessed by Figure 3a.

Figure 1: The size of the modified FE test (solid red line), the asymptotic test (green, large dash), the SAS Proc FREQ 

based “exact” p-value based test (blue, medium dash) and the conservative FE test (black, small dash), for m=12, and 

n=11 for testing (a) H0:  = 1 (OR = 1) and (b) H0:  = 2 (OR = 2) 

(a) (b)
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Figure 3: The size of the modified FE test (solid red line), the asymptotic test (green, large dash), the 

SAS Proc FREQ based “exact” p-value based test (blue, medium dash) and the conservative FE test 

(black, small dash), for m=65, and n=71 for testing (a) H0: =1 (OR=1) and (b) H0: =2 (OR=2)

(b)(a)

(b)

Figure 4: The size of the modified FE test (solid red line), the asymptotic test (green, large dash), the SAS 

Proc FREQ based “exact” p-value based test (blue, medium dash) and the conservative FE test (black, 

small dash), for m=128, and n=142 for testing (a) H0: =1 (OR=1) and (b) H0: =2 (OR=2)

(a) (b)

Figure 2: The size of the modified FE test (solid red line), the asymptotic test (green, large dash), the 

SAS Proc FREQ based “exact” p-value based test (blue, medium dash) and the conservative FE test 

(black, small dash), for m=27, and n=21 for (a) H0: =1 (OR=1) and (b) H0: =2 (OR=2) 

(b)(a)
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p-Values and Confidence Limits

A two-sided 1-α confidence interval for the modified Fisher exact test is constructed as all those that are not rejected at the two-
sided α level, i.e.  
                     

It is obtained by using the bisecting method starting with lower and upper limit of Woolf ’s asymptotic confidence limits as starting 
points for the bisecting variable , respectively, until the point of first rejection has been reached with a desired precision.

When evaluating the quality of a confidence interval, coverage can be considered, where ideally

  

However, with finite discrete distributions, this is generally not feasible. There are only (m+1)(n+1) possible confidence intervals
Ci,,j (for U=i, and V=j) and to require that the expectation

                                                

is always exactly (1-α) is unrealistic. Perhaps for some values of θ and underlying values of the nuisance parameter, but surely not for 
all. What is possible though is to plot the coverage as a function of (π1, π2)  [0,1]x[0,1], to see how the confidence interval generally 
performs compared to others from a coverage perspective. Or, alternatively, as a function of π1, for a selected set of values of the 
log odds ratio θ. As this exercise is computer-time intense, as all possible confidence intervals must be constructed, and as it will 
be challenging to judge from such plots which of two competitive tests has the better coverage, we do not pursue this in this paper. 

The p-value is constructed as the smallest level of α for which the hypothesis H0: θ = θ0 is rejected, i.e. 

.

Test OR Estimate p-value 95% CI of the OR
Example 1: 5/12 versus 7/11

- Modified FE Test 0.408 0.321 0.716 – 2.210
- Woolf ’s Asymptotic Test 0.408 0.296 0.760 – 2.193
- Exact SAS Proc FREQ 0.408 0.414 0.550 – 2.871

Example 2: 13/41 versus 6/47
- Modified FE Test 3.173 0.034 1.082-10.25

- Woolf ’s Asymptotic Test 3.173 0.036 1.077- 9.34
- Exact SAS Proc FREQ 3.173 0.039 0.969-11.31

Example 3: 37/65 versus 28/71
- Modified FE Test 2.029 0.0439 1.023 – 4.083

- Woolf ’s Asymptotic Test 2.029 0.0425 1.024 – 4.021
- Exact SAS Proc FREQ 2.029 0.0584 0.970 – 4.258

Example 4: 72/128 versus 58/142
- Modified FE Test 1.804 0.0175 1.108 – 2.936

- Woolf ’s Asymptotic Test 1.804 0.0167 1.113 – 2.925
- Exact SAS Proc FREQ 1.804 0.0203 1.082 – 3.018

Table 2: Comparison of two-sided p-values and 95% confidence intervals by examples 
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It is obtained via the bisecting method based on bisecting α. 

Some example of confidence intervals and p-values are provided in Table 2. That of the classical conservative Fisher exact test (5) 
is not shown as it is not used in practice. 

Of note is the disagreement between the p-value and the 95% confidence interval in Example 2 of the SAS Proc FREQ based exact 
method.

Power Comparison

The (envelope) power of the modified Fisher exact was discussed in [2]. However, presently smaller experiments involving response 
rates of two groups are mostly based on the exact p-value as obtained via SAS Proc FREQ. It is worthwhile to see the impact on 
potential cost-savings for such experiments by adopting the less conservative, Type 1 error rate controlling, and modified Fisher 
exact test instead. We do this merely by example. The SAS/IML macro, however, does allow you to obtain the power for given 

Figure 5: The power of the modified FE test (solid red line) compared to the “exact” p-value as provided by 

SAS Proc FREQ (dashed black line) for (a) n=m=15; (b) n=m=30; (c) n=m=45; and (d) n=m=75 and π1=0.2

(a) (b)
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sample sizes n and m and response rates π1 and π2. It does that not only for testing equality but also for testing superiority. The latter, 
obtained by additionally requiring a positive observed effect-size, only has a negligibly smaller power for relevant effect sizes as 
compared to testing equality. The power for testing equality of the modified Fisher exact test and the exact test performed by SAS 
Proc FREQ exact test are displayed for various scenarios in Figure 5.

From these examples, particularly in very small experiments, the proposed modified Fisher exact test is more powerful than the 
contemporary exact test as implemented in SAS Proc FREQ. The difference in power is, however, not a strictly declining function 
of the sample size, but may fluctuate by configuration. Please note that the difference, for large sample sizes, may seem small but a 
few percentages difference, implies a fair increase in sample size. For example, in Figure 5d, the power at π2=0.411 is 80.08% for the 
proposed modified Fisher exact test and 76.56% for the SAS Proc FREQ based “exact” p-value based test. To lift the latter to 80% 
requires an additional 10 subjects. This is a worthwhile cost-reduction. 

Discussion and Conclusion

There are many ways to extract two-sided p-values from the Fisher exact test as discussed by Agresti [17]. Another popular non-
conservative one, is the mid p-value, constructed as 

Figure 6: The size of the modified FE test (solid red line), the asymptotic test (green, large dash), the 

SAS Proc FREQ based “exact” mid p-value based test (blue, medium dash) and the conservative FE 

test (black, small dash), for m=20, and n=20 for testing H0: =1 (OR=1) 

p-value = 

where C is as in (6) but with a strict inequality. However, as earlier indicated, the Type 1 error rate is then no longer controlled as 
Figure 6 indicates.

The same applies for the Pearson Chi-square test and other tests. The proposed modification takes full control of the Type I error 
rate which many regulatory agencies so often mandate. It does that, however, in a non-conservative way, which gives a head-start 
when it comes to power, that seems to be sustained throughout the alternative space. The test-based approach by which associated 
p-values and confidence limits are constructed make them agree by definition.

The question is, can it be improved even further? One possible suggestion may be to have separate thresholds γ0, i (i=1,2) for c1(t) 
and c2(t), respectively, and then further maximize the area under the size. The direction for further research should, in our opinion, 
at least stay as close as possible to the randomized Fisher exact test, as this is the uniformly most powerful test among unbiased 
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tests. Possible criticisms to the proposed test are that the size is controlled not by a closed formula, but only by using numerical-
analytic methods and that it requires a fair amount of computing time for larger sample sizes (CPU-times of 60 sec, 5 minutes, 30 
minutes and 60 minutes , for N=50, 100, 200, and 300, respectively). The possibility to plot the size as a function of the nuisance 
parameter, largely takes away the first criticism. As computing power increases, the computational burden of the proposed method 
will diminish. Additionally, the potential to optimize the method through parallel programming could substantially improve the 
performance of the method. Moreover, for large sample sizes (and frankly also for small sample sizes) Woolf ’s asymptotic approach 
is a good alternative, particularly when strict control of the Type I error rate is not required, as for example when used in flagging 
significant adverse events for signal detection. 

A SAS/IML macro is provided in the appendix. Realizing that not all have the possibility to utilize SAS/IML, an equivalent 
R-package will be developed and available shortly. Please contact Dr Kyle Raymond (E-mail: kyleraymond08@gmail.com) for 
further information in this respect. 

Appendix

http://www.annexpublishers.com/articles/JBIA/6102-Appendix.pdf
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