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As the diversity of reverse engineering methods, we will cover four sophisticated promising modeling approaches. The aim of this 
paper is to obtain a better understanding of approached strengths and weaknesses on the systems biology community. The rest of 
the paper is organized as following first we describe models selection criteria which were studied in this paper, Second we cover 
the description of each model specifications, Third we identified the data source, its requirements and data discretization, fourth 
we summarized some of GRN construction challenges, fifth we described in brief each modeling schema, sixth we define how the 
importance of synthetic networks to assess the performance of GRN models then we describe DREAM project where researches 
meet and discuss their reverse engineering approach, and finally we open some questions to discussion.

Introduction
As basic building blocks of life, genes, as well as their products (proteins), do not work independently. Instead, in order for a cell 
to function properly, they interact with each other and form a complicated network. Gene networks represent the relationship 
between sets of genes that coordinate to achieve different tasks. A variety of clustering algorithms have been used to group together 
similar temporal expression patterns and thus reveal clusters of genes that seem to be co-regulated in experiments (see [1] for 
a review of clustering techniques). Genome-wide clustering of gene expression profiles provides an important first step towards 
this goal by grouping together genes that exhibit similar transcriptional responses to various cellular conditions, and are therefore 
likely to be involved in similar cellular processes. However, the organization of genes into co- regulated clusters provides a very 
coarse representation of the cellular network. In particular, it cannot separate statistical interactions that are irreducible (i.e., 
direct) from those arising from cascades of transcriptional interactions that correlate the expression of many non-interacting 
genes. More generally, as appreciated in statistical physics, long range order (i.e., high correlation among non-directly interacting 
variables) can easily result from short range interactions [2]. Thus correlations, or any other local dependency measure, cannot 
be used as the only tool for the reconstruction of interaction networks without additional assumptions [3]. Within the last few 
years a number of sophisticated approaches for the reverse engineering of cellular networks (also called deconvolution) from 
gene expression data have emerged. Their goal is to produce Gene gene interaction networks which can be used to discover new 
medicine and understand the ontology of disease.

We need to say that these models without real and clear problem statement are like computer games simulation. i.e you should to 
fit your problem with one of these models; not all models work perfectly. For example If we are not interested in predicting the 
exact concentrations of different substances, but only in the patterns of the systems behavior such as steady states, we can often use 
simplified Boolean- type networks instead of differential equations [4].
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We choose four modeling approach which are Bayesian Network (BYN), Boolean Network (BNN), Non Linear Ordinary Differ-
ential Equation (NLODE), and Association Networks (AN), based on their promising results, to they extend on the community 
and the availability of its implementation which makes an easy for the reader to test each approach on synthetic or read data set 
without involving in the implementation complicity. The available software for each method are Bayesnet Toolbox [5], Probabil-
istic Boolean Network [6], Genetic Network Analyzer (GNA) [7] and ARACNE [8] respectively. Table 1 shows the comparison 
between above GRN modeling approaches as described in the following sections:

Discrete or continuous

Static(s)/
dynamic(d)

Discreet(d)/
Continuous(c)

Deterministic(d)
/Stochastic(s)

Qualitative(ql)/
quantitative(qn)

BYN s d,c s qn

BNN d d d ql

NLDE d c d qn

AN s c d qn

Table 1: Comparison between GRN modeling approaches

Ivan Ivanov and Edwad R Dougherty [9] compare fine-scale stochastic-differential equation models with coarse-scale discrete 
models in the context of currently available data and with respect to their description of switch-like behavior among specific 
groups of genes and find that a discrete model has predictive power comparable to that of the stochastic differential equation 
model under the assumption of complete knowledge of the parameters of the fine-scale model.For more details see data discretiza-
tion section.

Deterministic or stochastic
In deterministic models we assume that the next state of the system is determined by the current state and the external inputs. 
However, in real world systems stochastic effects may play an important role. For instance, for some genes in yeast the number of 
mRNA molecules is close to one copy per cell [10]. This means that it is likely that there is a considerable intrinsic noise element 
present – some cells apparently have more mRNA molecules of the given species present than others. Thus modeling a cell by us-
ing continuous concentrations effectively means modeling an ensemble of cells by mean values of stochastic variables. Simulating 
a stochastic model is computationally more expensive, because the simulations have to be run several times to provide a good 
impression of the system behavior. But stochastic models are not always necessary; it depends on the system that is to be modeled. 
If the number of molecules involved is small and if important processes depend on random effects, stochastic models might be 
the best choice.

Gene network inference techniques are data-hungry [11]. Time series and steady-state data are the available gene expression data. 
Time series has the advantage of being able to identify causal relations, i.e. gene-regulatory relations, between genes without the 
need of actively perturbing the system. Spellman et al. generated time series data under different culture conditions and using 
different mutant backgrounds in order to reveal a more comprehensive picture about gene regulation during the yeast cell cycle 
[12].

Data Sources and Requirements

Table 2 shows how many data points do we really need to infer a gene network on N genes depends on the model used to do the 
inference [11]. 

The need for large numbers of data points, and many different conditions, implies that successful modeling efforts will probably 
have to use data from different sources like from different high-throughput data sources, mainly microarray based gene expression 
analysis, promotor sequence information, chromatin immunoprecipitation (ChIP) and protein-protein interaction assays [11].

Florian Geier et al. [13] studied the requirements on data size and data quality that must be met by a successful network 
reconstruction and we could summarize their findings as the following:

• Short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene 
regulatory networks.
• The benefit of using of prior knowledge within a Bayesian learning framework is found to be limited to conditions of small gene 
expression data size.
• The results suggest that discretization of the continuous data leads to a large information loss.
• Results indicate, that network reconstruction with currently available data will still give rise to many false predictions (FDR ~ 
50%).
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Model Data needed

Boolean, fully connected 2N

Boolean, connectivity K 2Klog(N) ?

Boolean, connectivity K, lin. sep. Klog(N/K)

Continuous, fully connected, additive N

Continuous, connectivity K, additive Klog(N/K) ?

Pairwise correlation log(N)

Table 2: Data size to recover gene networks with N genes and Connectivity K: 
at most K regulatory inputs per gene.Fully connected: each gene can receive 
regulatory inputs from all other genes; lin. Sep: linearly separable, for Boolean 
functions; additive: regulation can be modeled as a weighted sum.

Reconstructing regulatory networks from gene expression profiles is a challenging problem of functional genomics. In microarray 
studies the number of samples is often very limited compared to the number of genes, thus the use of discrete data may help 
reducing the probability of finding random associations between genes. On other hand the results was found by Florian [13] 
suggest that discretization of the continuous data leads to a large information loss. Barbara Di Camillo et al. [14] confirms that the 
use of discrete rather than continuous data is advantageous when few samples are available. Continuous approaches are likely to 
become advantageous with increasing number of samples. There are many discretization methods the simple one is to map gene 
expression to 0 and 1 by setting an appropriate threshold. See [14] for more details.

Data Discretization

Stark J et al. [15] summarized the challenges that a reconstruction of gene-regulatory networks from time series of gene expression 
data is facing.

GRN Challenges

• The quality of data derived from high-throughput gene expression experiments is largely limited by noise. For example the typi-
cal magnitude of observational noise in microarray measurements is about 20–30% of the signal. In high-throughput techniques 
dynamical noise maybe expected to play a minor role due to the underlying population sampling of the data. In contrast, data 
derived from gene expression at the single cell level can exhibit a significant amount of dynamical noise as well as strong cell to 
cell variations.

• Data size, i.e. length of a time series and number of replicates, is limited by the cost of experiments. The typical length of time 
series measurements in microarray studies is around 10–20 time points and 3–5 replicates. Therefore, any model underlying net-
work reconstruction methods must be simple, i.e. contain as few parameters as possible, and robust.

• Gene regulation is due to the activity of transcription factors (TFs) which is in most cases post-translationally controlled by 
additional factors. This activity is not directly observed by measuring TF expression levels.However, many network reconstruction 
methods based on time series assume the activity of TFs to be directly related with their expression levels, there by omitting 
additional hidden variables.

Accounting for hidden variables in the framework of network reconstruction methods based on time series demands more data in 
order to estimate the additional parameters and can complicate a biological interpretation of the hidden variables.

Bayesian Network
While a variety of computational methods have been considered for reconstructing gene networks from observational gene ex-
pression data, Bayesian network (BN) based approaches have shown great promise to infer causal relationships between genes and 
receive increasing attention. One of the first seminal papers promoting this approach aimed to learn gene regulatory networks in 
Saccharomyces cerevisiae from gene expression profiles with Bayesian networks [16].

BN are especially suitable for learning genetic regulatory networks for the following reasons: (1) the sound probabilistic semantics 
allows BNs to deal with the noises that are inherent in experimental measurements; (2) BNs can handle missing data and permit 
the incomplete knowledge about the biological system and (3) BNs are capable of integrating prior biological knowledge into the 
system.

Generally, a BN is a graphical representation of the dependence structure between multiple interacting quantities. This graphical 
representation is more commonly called a directed acyclic graph (DAG). The nodes or the vertices of the DAG represent the ran-
dom variables in the network while the edges connecting the vertices represent the causal influence of one node on the other. To 
learn the structure of a network that describes the causal relationship among variables, one needs to have (1) a scoring function 
that assesses how well a network fits the data and (2) a search method to find networks with high scores.
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A BN is a DAG that represents a joint probability distribution of a set of random variables {X1, X2, ..., Xn}. The nodes of the DAG 
are represented by this set of random variables. Let Pai denote the set of parents of Xi in the DAG. The DAG encodes the Markov 
relation which states the following: each variable Xi in the DAG is independent of its non-descendants given its set of parents in 
the DAG. Mathematically the joint distribution can be decomposed into a product form as

This is referred to as the chain rule for BNs. Learning a BN structure is to find a DAG that best matches the dataset. The common 
method of structure learning is to define a scoring function that evaluates how well the DAG explains the data and then to 
search for the best DAG that optimizes the scoring function. A commonly used scoring function for discrete data is called BDe 
scoring metric which computes the posterior probability of a network for the given data [17]. As the number of possible graph 
structures is super-exponential in ‘n’ (the number of nodes in the network), searching exhaustively over the space of the DAGs is 
computationally very challenging. Thus, heuristic methods are typically used. For more details about these methods the reader 
could see [18].

Boolean Network
The simplest dynamic models – synchronous Boolean network models – were used as a model for gene regulatory networks already 
in the 1960’s by Stuart Kauffman as [19]. Boolean networks are based on the assumption that binary on/off switches functioning 
in discrete time steps can describe important aspects of gene regulation. In synchronous Boolean network models all genes switch 
states simultaneously (Figure 1). We can introduce the concept of the state of the network defined as an n-tuple of 0s and 1s de-
scribing which genes in the network are or are not expressed at the particular moment (Figure 1). As time progresses, the network 
navigates through the ‘state space’, switching from one state to another, as shown in Figure 1 D. For a network of n genes, in total 
there are 2n possible different states, for instance, for a three gene network the possible states are (0,0,0), (0,0,1), ..., (1,1,1). We can 
follow the succession of states with time and study which states are reached. Some states might never be reached. It is possible 
to look for attractors: these are states or series of states that once reached will not be left anymore. The small example network in 
Figure 1 has two attractors: one attractor is a single state (0,0,1), and the second attractor consists of two alternating states (1,0,1) 
and (0,1,0). This approach has been generalized in a number of ways. Randomly generated networks are used to study the dynam-
ics of complex systems [21]. Stochastic extensions to deterministic Boolean networks were proposed so-called noisy networks by 
Akutsu et al. [22] and Probabilistic Boolean Networks by Shmulevich et al. [23].

Figure 1: Example for a small Boolean network consisting of 3 genes X, Y, Z. There are different ways for representing the network: A as a graph, 
B Boolean rules for state transitions, C a complete table of all possible states before and after transition, or D as a graph representing the state 
transitions. Reproduced from [20].

Non Linear Definitional Equations
Nonlinear ordinary differential equations are probably the most-widespread formalism for modeling genetic regulatory
networks. They represent the concentration of gene products mRNAs or protein by continuous, time-dependent variables, that is, 
x (t), t Є T, T being a closed time interval (T Є R≥0). The variables take their values from the set of nonnegative
real numbers (x: T → R≥0), reflecting the constraint that a concentration cannot be negative. In order to model the regulatory 
interactions between genes, functional or differential relations are used.

More precisely, gene regulation is modeled by a system of ordinary differential equations having the following form:

                                                                   n

                         P(X1,…………,Xn) =   ∏  P(Xi/Xpa[i])
                                                               i=1  
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                                                             A------- = f(x)

where x = [x1, . . . , xn]’ is the vector of concentration variables of the system, and the function f = [ f1, . . . , fn]’, usually highly 
nonlinear, represents the regulatory interactions. The above system does not include the delays resulting from the time it takes to 
complete transcription, translation, and the other stages of the synthesis and the transport of proteins you can see [24] for more 
details.

The above definitions can be illustrated by means of a simple network in Figure 2. Each of the genes encodes a regulatory protein 
that inhibits the expression of the other gene, by binding to a site overlapping the promoter of the gene.

An ordinary differential equation model of the network in Figure 2 is shown in Figure 3. The variables xa and xb represent the con-
centration of proteins A and B, encoded by genes a and b, respectively. The temporal derivative of xa is the difference between the 
synthesis term κah-(xb, θb,mb) and the degradation term γaxa. The first term expresses that the rate of synthesis of protein A depends 
on the concentration of protein B and is described by the function h-. This so called Hill function is monotonically decreasing. It 
takes the value 1 for xb =0, and asymptotically reaches 0 for xb →∞. It is characterized by a threshold parameter θb and a coopera-
tivity parameter mb (Figure 3.5b). For mb > 1, the Hill function has a sigmoidal form that is often observed experimentally [26]. 
The synthesis term κah-(xb, θb,mb) thus means that, for low concentrations of protein B, gene a is expressed at a rate close to its 
maximum rate κa (κa > 0), whereas for high concentrations of B, the expression of the gene is almost completely repressed. The 
second term of the differential equation, the degradation term, expresses that the degradation rate of protein A is proportional to 
its own concentration xa, γa being a degradation parameter (γa > 0). Unfortunately, they are difficult to treat mathematically for 
networks comprising more than two genes, in which case we have to take recourse to numerical simulation. However, the applica-
tion of numerical techniques is often difficult in practice, due to the absence of numerical values for the parameters in the model. 
A possible alternative is the use of linear ordinary differential equations. Powerful techniques for solving these equations exist, as 
well as techniques for estimating parameter values from experimental data.

Association Network
If two genes show similar expression profiles, they are supposed to follow the same regulatory regime. To put it more pointedly: 
coexpression hints at coregulation. Coexpression networks (also known as relevance networks) are constructed by computing a 
similarity score for each pair of genes. If similarity is above a certain threshold, the gene pair gets connected in the graph, if not, 
it remains unconnected. Wolfe et al. [27] argue that networks of coexpressed genes provide a widely applicable framework for as-
signing gene function. 

Transcription and/or translation

Inhibition

 

Figure 2: Example of a simple genetic regulatory network, composed of two genes a and b, the proteins A and B, and their regulatory interactions. The 
notation is inspired by the graphical conventions proposed by Kohn [25].

Figure 3: (a) Nonlinear ordinary differential equation model of the mutual- inhibition network (Figure 1). The variables xa and xb correspond to the 
concentrations of proteins A and B, respectively, parameters κa and κb to the synthesis rates of the proteins, parameters γa and γb to the degradation 
constants, parameters θa and θb to the threshold concentrations, and parameters ma and mb to the degree of cooperativity of the interactions. All 
parameters are positive. (b) Graphical representation of the characteristic sigmoidal form, form > 1, of the Hill function h- (x, θ, m)

dx

dt
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They show that coexpression agrees well with functional similarity as it is encoded in the Gene Ontology [28]. The first critical 
point in building a coexpression network is how to formalize the notion of similarity of expression profiles. Several measures 
have been proposed, the most simple of which is correlation. In a Gaussian model, zero correlation corresponds to statistical 
independence. The second critical step in building coexpression networks is assessing the significance of results. Many pairs of 
genes show similar behavior in expression profiles by chance even though they are not biologically related. Even high similarity 
of expression tells us little about the underlying biological mechanisms. Coexpression networks include regulatory relationships, 
but we cannot distinguish direct from indirect dependencies based on the similarity of expression patterns. Figure 4 exemplifies 
this problem on a small set of three highly coexpressed genes, which form a clique (a completely connected subgraph) in a 
coexpression network. The figure shows that several regulatory mechanisms can explain this observation, and from coexpression 
data alone we have no way of choosing between them. There are two possible solutions. Functional genomics has a long tradition 
of perturbing the natural state of a cell and inferring a gene’s function from the observed effects. These interventions allow us 
to distinguish between the three models in Figure 4, because each model results in different predictions of effects, which can be 
compared to thoseobtained in experiments. For example, perturbing gene Y in the cascade X → Y → Z will only have an effect on 
gene Z but none on gene X. In the case where Y regulates both X and Z, perturbing it will result in changes at both regulatees. 
In the last case, where all three genes are regulated by a hidden regulator, perturbing one of them will not lead to changes at the 
other two. In the absence of perturbation data statistical methods may be used to find which of the possibilities is most likely. The 
theoretical background is the concept of conditional independence. Please see [2] for more details. 

Figure 4: Different mechanisms can explain coexpression. The left plot in the dashed box shows three coexpressed genes forming a clique in the 
coexpression graph. The other three plots show possible regulatory relationships that can explain coexpression: The genes could be regulated in a cascade 
(left), or one regulates both others (middle), or there is a common “hidden” regulator (right), which is not part of the model. Reproduce from [2].

A powerful approach to test our understanding of gene regulatory networks is to build new networks from scratch in an approach 
called synthetic biology. Then we could compare model predictions with networks output. This approach allows us to investigate 
in depth the effect of noise, data size and hidden variables in the form of unobserved processes on the reconstruction of gene 
regulatory networks [29].

Synthetic networks

DREAM is a Dialogue for Reverse Engineering Assessments and Methods. Its main objective is to catalyze the interaction between 
experiment and theory in the area of cellular network inference. The fundamental question for DREAM is simple: How can 
researchers assess how well they are describing the networks of interacting molecules that underlie biological systems? The answer 
is not so simple. Researchers have used a variety of algorithms to deduce the structure of very different biological and artificial 
networks, and evaluated their success using various metrics. What is still needed, and what DREAM aims to achieve, is a fair 
comparison of the strengths and weaknesses of the methods and a clear sense of the reliability of the network models they produce. 
The reader could refer to the recent previous DREAM conference meeting to look for new reverse engineering approaches [30]. 
The purpose of DREAM is not to produce the best possible network, but to evaluate the best tools for producing networks. The 
choice of tools depends in part on the nature of the available data. The uploaded results with DREAM2 challenge show that the 
networks inferred from the data differed significantly from the real network, which is precisely known. What is not known is 
whether the data given are, by themselves, sufficient to distinguish the networks.

Reverse Engineering Competition

An interesting blinded competition on DREAM3 2008 assess the ability of scientists and their computer servants to infer networks 
from experimental data, by comparing their predictions to “gold-standard” networks whose structure is thought to be known. 
Predictors could know their ranking online [30].
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At the basis of any modelling, including network modelling, there is a realisation and acceptance that a model describes only some 
properties of the ‘real world’ system, and ignores others. Thus it emphasizes particular aspects of reality, leaving out details that are 
not relevant for the purpose of the study. How far are we from being able to build realistic cell models? The availability of large-
scale data sets such as microarray gene expression and genomic localisation data triggered the search for suitable approaches to 
model complex biological systems. By prediction gene network just from gene expression data we were ignoring the last 30 years 
of molecular biology literature in the design of the network. The question is how to make predictions in addition of what is known. 
We need also to standardize the methods of comparing gene network models. What is not known is whether the data given are, 
by themselves, sufficient to distinguish the networks. Finally from the Gene Ontology project the function of about one third of 
all genes is still unknown for the yeast Saccharomyces cerevisiae despite it being one of the best-studied organisms. And even for 
many of the better-known genes and core processes that have been studied for decades, like the cell cycle,there is still not enough 
data available to exactly know all changes in concentration and activation patterns. Currently it seems not feasible to simulate 
even relatively simple cells like yeast. Mechanisms like RNA interference, regulated degradation of mRNAs and proteins, chemical 
modifications of key molecules and others might play a larger role than anticipated in current models, other processes might 
still be unknown. It is obvious that the separation into gene regulatory networks, metabolic networks and protein interaction 
networks is possible only up to a certain degree. To what extent can the transcription regulation networks be decoupled from 
other networks, such as signal transduction networks? We need to integrate many types of information if we want to build realistic 
dynamic models; however, for current modelling approaches we have to limit the complexity of the systems we are dealing with.

Conclusion
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