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Introduction
Brain physiology critically depends on constant oxygen supply to the neurons to ensure various energy–dependent functions of 
the central nervous system. In energy terms, the brain accounts for over 20% of total body oxygen metabolism with the neurons 
consuming 75%–80% of the energy produced by the brain mitochondrial system [3]. The brain lacks any substantial energy reserve 
and entirely depends on the cerebral microcirculation, which responds quickly and locally to the metabolic needs of neurons via 
neurovascular coupling during neuronal activation [4-6].

Information on PO2 distribution in the brain and PO2 mapping is crucial for understanding cerebral oxygen metabolism and building 
any realistic model of brains oxygenation. PO2 of the brain has been studied across species in some detail using technologies of various 
degree sophistication, with high temporal and spatial resolution, both invasive and non-invasive ones [7-15].

The reported values for PO2 in the cerebral arteries are 91-124 mm Hg [16-18]. PO2 in larger pial arterioles with the diameter equal or 
over 40 µm is above 100 mmHg decaying to about 65 mmHg in the 10-µm arterioles [18,19]. PO2 in the capillaries is 25–35 mm Hg 
[11,16,18,20] and in the cortical venues is 33-44 mmHg [16,18,21].

A research on the radial profiles of tissue PO2 around arterioles yielded some rather unexpected findings. The periarteriolar PO2 in the 
pial microvessels in normoxia was ~99 mmHg in the vessels of 230 μm diameter and ~ 73 mmHg in the vessels of ~22 μm diameter 
[22]. Overall, the tissue PO2 values were in the range of ~ 5–100 mm Hg, with the higher values occurring in regions close to pial 
arterioles [8,9,18,20,23]. The brain tissue PO2 around capillaries is about 15 – 29 mmHg [17,24,25].

Non-invasive measurement of cerebrospinal fluid PO2 in humans using MRI visualisation makes it possible to obtain absolute PO2 
quantification [26]. It shows that PO2 in the CSF of the cortical sulci is 106 ± 42 mm Hg [7,21,27,28]. On inhalation pure oxygen it 
rises up to 248 ± 50 Hg [27]. Considered against the PO2 of 25–35 mm Hg in the capillaries, it poses a question if the capillaries may 
be the only oxygen supply source to the tissue. There is also an obvious disagreement between the high PO2 in the venules and low 
oxygen in the capillaries.
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Brain physiology critically depends on constant oxygen supply to the neurons to ensure various energy–dependent functions of the 
central nervous system. A volume of latest experimental data on oxygen metabolism obtained with high temporal and spatial resolution, 
with both invasive and non-invasive methods, and the use of technologies of various degrees of sophistication, strongly suggests arteriole 
involvement in brain oxygenation. This new approach challenges the traditional views on brain oxygenation according to which oxygen 
supply to the brain tissues occurs by diffusion at the capillary level.

In this research, a computer simulation of brain oxygenation at the microvascular level has been carried out to assess the role of the 
arterioles in the process. The model is based on the convective nanofluidic (CNF) mechanism of brain water metabolism involved in 
oxygen mass-transfer [1,2]. The carried out simulations demonstrate that the arteriole oxygen supply dominates over the capillary 
oxygen delivery. The oxygen supply rates by arterioles can well meet the neuronal demands. The model accounts for some oxygen partial 
pressure (PO2) distribution patterns in the brain that are hard to explain from the conventional capillary-oxygen-diffusion theory.
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Brain microvessels are highly permeable to water. The most active water-conducting aquaporin AQP4, involved in regulation of 
water flux through the blood-brain barrier (BBB), is expressed in the astrocyte endfeet enveloping the microvessels. It ensures 
kinetic control over water movement between the blood and the brain interstitial space [35-40]. The walls of the cortical arterioles 
are permeable to oxygen [16,31].

The brain extracellular space (ECS), an intricate network of nanoslits and nanochannels, is a conduit for the extracellular fluid 
(ECF). The ECS presents a nanofluidic domain where fluid movement is governed by the slip-flow mechanism [41,42]. The ECF, a 
mobile medium, surrounds all neurons and other components of the brain parenchyma and may serve a vehicle for oxygen, energy 
substrates, information molecules etc. There is constant convective exchange between the CSF and the ECF [43]. It should be noted 
that according to the orthodox views, the ECS presents a diffusion barrier to mass transfer [44-46].

The aims of the present research has been to build a computer model of oxygen metabolism at the microvascular level, based 
on the CNF mechanism, and to explore its oxygen-mass-transfer capacity with a special attention given to the function of the 
arteriolar section.

We consider a simplified linear microvascular array consisting of a feeding arteriole, a capillary and a draining venule [47]. This 
structure is modelled as two right frustums joined at the top (Figure 1). Contrary to the oxygen diffusion models [48,49], no 
restrictions are imposed on the spatial arrangement of these microvessels in respect to the neurons. The geometric characteristics 
of the microvessels and other pertinent parameters for the model have been obtained from the literature [50,51].

For clarity of presentation, the diameters of the microvessels are rendered about thirty times larger compared to the overall length 
of the system.

The simulations have been carried out in two steps: (i) evaluation of the radial water volumetric flow rates and (ii) evaluation of the 
molar oxygen mass-transfer rates in consideration of the water volumetric flow rates, oxygen solubility and oxygen molar volume.

To model the radial water fluxes we used Kedem-Katchalsky formalism, based on linear non-equilibrium thermodynamics [52]:

where Jv, is the volumetric flow rate of water (cm3/s/mmHg per cm2 transfer area); Lp is an AQP4-dependent hydraulic conductivity 
coefficient (13.7 10-6 cm/s/mmHg) [1]; S = LSA is the frustum lateral surface area (cm2):

Methods

Rapid oxygen enhancement and the high PO2 values in sulcal CSF have been interpreted as an indication of a possible direct 
transfer of O2 from the pial arterioles into the CSF [15,16,29]. Based on the accumulated data a conclusion has been drawn that all 
microvessels, but not exclusively the capillaries, may supply oxygen to brain tissue [16,18,30,31]. Contribution of the arterioles in 
supplying brain tissues with oxygen is stressed. The new evidence challenges the common views of capillaries as the major site of 
O2 delivery [18].

Oxygen supply by capillaries to the surrounding tissue is based on the Krogh’s oxygen diffusion mechanism [32]. The controversy 
about the oxygen supply mechanism asks for a paradigm shift and the use of other approaches to look into the problem [1,33,34].

FS: the filtration section, between (a) and (b); OS: the oscillatory section, between (b) and 
(c); RS: the reabsorption section, between (c) and (d). The blood flow proceeds from (a) to 
(d) as indicated by the arrow. The narrowest diameter in the system is at (e). Anatomically it 
belongs to the capillary. The axial dimensions of each functional section have been computed.
Figure 1: Layout of the model microvascular array and its functional sections
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The spatiotemporal presentation of our simulation results reveals some interesting features about water metabolism in the 
microvascular system (Figures 2 and 3). The interplay of the hydrostatic and the oncotic pressure gradients outside of and inside 
the microvessels results in establishing distinct water flux patterns along the length of the microvascular array. Such patterns 
has been demonstrated in our earlier research on the brain water metabolism and the capillary water exchange [1]. Our present 
simulation, encompassing microvessels beyond exclusively capillary area, demonstrate different quantitative results.

Figure 2 shows water movement in the filtration and the reabsorption segments of the microvessels.

Results

where π = 3.14;
R and r are frustum radii (cm):  R > r;
L is the frustum slant height (cm).
Pa is the hydrostatic pressure at a (66.6 mmHg).
ΔP is the axial hydrostatic pressure gradient (mmHg/cm):

where α is the Henry's law solubility constant  (2.80 x 10-3 cm3 O2/cm3 at 37 oC and 100 mmHg PO2);  
VH2O is the volumetric flow rate of water (cm3/ min);  

2O
mV  is the molar volume of oxygen (193313 cm /mol at 37 oC and 100 mmHg PO2).

The intracranial hydrostatic pressure (ICP) waveforms (Figure 2) have been digitized and approximated by analytical expressions 
using TableCurve. Computer simulations have been carried out using Mathematica 10 program and solved numerically [1,2].

The overall fluid transfer between the blood and the interstitial fluid is isosmotic [36,53] driven by the hydrostatic pressure gradients 
between the blood and the surrounding tissue [54-56]. The volumes of water transferred in various sections of the model have been 
found by numerical integration of Eqn. 1.

The molar oxygen mass transfer rates, dO2 / dt (fmol/min per LSA), have been obtained from:

Where Pa (mmHg) and Pd (mmHg) is the hydrostatic pressure at a and d, respectively,
Pd is the venular hydrostatic pressure (6.6 mmHg);
Lad is the overall length of the linear microvessel array (cm).
x is a distance from a (cm) at any point on the longitudinal axis of the microvessel array.
f (t) is an analytical form for the intracranial pressure (ICP) as a function of time (for the ICP pressure waveforms shown in Figure 2).
πp is the plasma oncotic pressure (22 mmHg).
πISF is the interstitial fluid oncotic pressure (1 mmHg).

( ) /  ,a d adP P P L∆ = − (3)

(4)2
2 2/ /  ,O

H O mdO dt V S Vα=

FS: filtration section; RS: reabsorption section; Pl: infinite plane passing through the minimum at 0.14 s
In the right top corner, there are the two ICP waveforms used in current simulations, w1 and w2, with the maxima 
8 mmHg and 15 mmHg, respectively. The wave’s frequency is 1 Hz. The axial dimension of the FS is 0.12 cm. The 
FS presents a functional division of the microvascular system. Anatomically it includes the arteriole and part of the 
capillary. The hydrodynamic pressure at the arterial end of the arteriole is set at 66.6 mmHg (Table 1).
Figure 2: Water movement in the filtration and the reabsorption sections of the microvascular array
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To simulate the effects of the changes in the volumetric blood flow on the radial water flux, the entrance diameter of the feeding 
arteriole was set to 40 µm, 60 µm and 80 µm. Table 1 demonstrates corresponding increases in the radial water flux and oxygen 
supply rates with the diameters.

An increase in the ICP (wave w2) results in a decrease of the radial water flux and the oxygenation rate.

In Figure 3 there are presented results on water exchange within the oscillatory section of the microvascular system.

With the axial dimension 0.0605 cm and the venule outlet diameter 60 µm, the RS reabsorbs about 14% of the filtrated water. The 
rest of the filtrated water gets into the ECF and, moving along the nanodimentional ECS, schould be reabsorbed into either other 
venules or mix, eventually, with the bulk CSF.

On normobaric inhalation of 95% oxygen there is observed a considerable increase of oxygen partial pressure in the microvessels 
and surrounding tissues reaching 241 mHg O2 in arterioles 30 μm diameter [31]. This is translated into a 2.41- times increase in 
the oxygen supply rate by the CNF mechanism.

Compared to the FS, the radial water fluxes within the OS are low. As has been suggested before, the oscillatory pattern of water 
fluxes in the OS, as shown by the bar graph, facilitates fast informational exchange between the brain and the systemic blood [1]. 
The frequency of this exchange is controlled by the heart beat rate.

No

Feeding
arteriole
diameter 

at a,
cm x 10-4

Hydrostatic
pressure at

a,
mmHg

ICP wave
max/ min,

mmHg

LSA, cm2

x 10-4

Radial
water flux,
cm3/min

x 10-6

Oxygen
supply rate in
normoxia†,
fmol /min

Oxygen
supply rate in
hyperoxia ††,

fmol /min

1 40 66 *8.0/ 2.0 9.3 1.86 26.9 64.8

2 60 66 *8.0/ 2.0 12.6 2.52 34.5 83.1

3 80 66 *8.0/ 2.0 16.3 3.26 47.3 114.0

4 80 66 **15.0/ 2.9 15.0 2,40 34.8 83.9

*Wave w1; **Wave w2; †Respiration with 21% oxygen; ††Respiration with 95% oxygen
Table 1: Parameters of water movement and oxygen supply rate within the FS in the microvascular array

OS+ presents the filtrated water and OS- the reabsorbed water. Pl indicates the infinite plane passing 
through the minimum at 0.14 s. The bar graph in the right top corner presents the volumes of the 
filtrated (1) and the reabsorbed (2) water over a complete cardiac cycle.
Figure 3: Simulation results on water movement in the oscillatory section of the microvascular system
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A large body of evidence and experimental results on oxygen partial pressure distribution in the brain challenges the capillary 
oxygen diffusion theory of brain oxygenation. It asserts that the arterioles may play a key role in oxygen supply to the cerebral tissue 
[16,18,30,31,57] This controversy directly touches upon the mechanisms of brain oxygenation.

In our simulations, we employed a simple linear microvascular array of an arteriole, a capillary and a venule to investigate the 
extent of involvement of a particular arteriolar section in the oxygen exchange. The model is based on the CNF mechanism of brain 
water metabolism engaged in oxygen mass transfer in the brain tissues [1,2].

Our results demonstrate that the arteriole section of the array presents the main source of oxygen supply. The obtained oxygen 
supply rates of 26.9 - 47.3 fmol/min, in normoxia, and 64.8 - 114.0 fmol/min, in hyperoxia, are well compared with the oxygen 
consumption rate by an average neuron of the human brain, 27.4 fmol/cell/min [58], and by an average neuron of the brain across 
species, 0.66 - 60.0 fmol/cell/min [58,59].

In this research, we concentrated only on small-diameter arterioles. There is evidence that larger arterioles may equally supply oxygen 
to the surrounding tissues [16,18,30,31,60]. Considering all that, one may well assume that within the arteriolar networks there would 
be even higher oxygen supply rates compared to those obtained on a simple microvascular system under study in this paper.

Our earlier simulations carried out on a capillary model give oxygen supply rate of 0.88 fmol/min [2]. The arteriolar rates are thus 
30 - 53 times higher than the capillary ones. This underscores the metabolic importance of arterioles in brain oxygenation.

Oxygen supply rate increases with an increase of the arteriole diameter (Table 1). Considered from the point of views of the 
regulation mechanism of neuronal oxygen-supply, it demonstrates the way the changes in the arteriole diameter influence the 
oxygen supply rates. This effect is observed in the neurovascular coupling, as a response to the neuronal activation [4-6,61,62].

Increasing intracranial hydrostatic pressure negatively reflects on brain oxygenation (Table 1, wave 2). It might serve as an early 
indication to the effect of a moderate increase of the ICP on brain energy metabolism.

A commonly accepted brain oxygenation mechanism is based on the oxygen diffusion theory put forward by Krogh where the flow 
of oxygen in the tissue is driven by a concentration gradient of oxygen between the blood to the cells [48,63]. Diffusion mechanism 
intrinsically sets limits for the critical radius of 30 to 40 µm around a capillary within which sufficient oxygenation of the tissue is 
only possible [64]. There are other limitations of diffusion when applied to the brain [59]. The spatial organization of the vascular 
system where oxygen content is higher than in tissue, is a key factor for maintaining effective oxygen supply [65]. Contrary to 
diffusion, the CNF mechanism of brain oxygenation is free of distance limitations or restrictions on spatial organization [1,2].

There are some observations that are difficult to explain by the oxygen diffusion mechanism alone operating at the capillary level 
[66-68]. For example, PO2 in the outflowing blood of the cortical venules is higher than in the capillaries [16]. It is by 39% higher 
in the CSF than in the venous blood [14]. PO2 in the sulcal CSF is close or equal to that in the arterial blood and from 4 to 5 times 
higher than in the capillary blood [27].

Extremely energy demanding neural activity is coupled to the mitochondrial energy production and critically depends on tissue 
oxygenation [71,72]. The local oxygen consumption rates, depending on the neuronal activity, may change by a factor of about five 
[64]. Monitoring the redox-state of the components of the mitochondrial electron transfer chain makes it possible to closely study 
respiratory functions of the mitochondria, both in vitro and in vivo [73]. The intensity of mitochondrial respiration is commonly 
assessed on the basis of the NAD+/NADH ratio [74].

In our earlier research, we studied, in an open-system device, the NAD+/NADH ratio in mitochondria under the controlled oxygen 
supply rates. The zero-order kinetics of the oxygen consumption rates by the mitochondria continued down to the critical PO2 ≈ I mm 
Hg. Below that value, the mitochondria entered the controlled hypoxic states characterized by uncoupling of oxidative phosphorylation 
the extent of which depended on the level of the hypoxia. The hypoxic uncoupling was fully reversed on return to normoxia. [75-77].

NADH fluorescence imaging has been used to study in vivo the effect of AQP4 deletion on oxygen microdistribution. Deletion of 
Aqp4 increases NADH fluorescence, a sign of tissue hypoxia, in the areas furthest away from cerebral microvessels. This, for the 
first time, clearly demonstrates AQP4 participation in the oxygen supply [78]. The fact that AQP4 deletion manifests itself furthest 
away from the cerebral microvessels excludes the diffusion mechanism of oxygen transport with its critical oxygenation radius. At 
the same time, it fully agrees with functioning of the CNF mechanism of brain oxygenation.

The CNF mechanism explains the enhancement of the venular PO2. Indeed, in the microvascular arrangement under study, the 
venular RS reabsorbs 14% of the water filtrated in the FS. This flux carries oxygen to the venule thus increasing the PO2 in the 
outflowing blood.

To cope with this situation we have put forward a conceptual view  of a convective extracapillary transfer of oxygen [68,69] and 
further explored this issue within a nanofluidic approach to brain water metabolism [1,2,70]. 

Discussion
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The progress in the technology of oxygen assessment and mapping in the brain, along with the new accumulated experimental data, 
challenge the exclusive role of the capillaries in brain oxygenation and suggests the arterioles as an alternative source of oxygen.

Carried out computer simulations of brain oxygenation demonstrate that the arterioles present an important source of oxygen 
for the neurons dominating over the capillary supply. Contrary to the diffusion-based orthodox theory, oxygen mass transfer 
is realized through the CNF mechanism of brain water metabolism [1,33]. The simulations account for the ‘anomalous’ oxygen 
partial pressure distribution in the brain tissues and the increase of oxygen in the outflowing venous blood, the observations that 
are difficult to explain from the conventional capillary-oxygen-diffusion theory. The simulations underscore the important role of 
the arterioles in brain oxygenation.

Brain function critically depends on continuous oxygen supply by the bloodstream. A commonly accepted view on brain 
oxygenation centers on the capillaries as the main source of oxygen for the brain tissues.

The steady–state level of PO2 in the sulcal CSF of about 106 mmHg is notably high and at least 3-4 times over that of the capillary PO2 
[21,27]. The subpial zone is characterized by the absence of capillary vessels [79]. High oxygen consumption by the surrounding tissue 
asks for equally high oxygen supply rate to maintain a steady-state level of PO2. In this situation, the capillaries are unlikely oxygen 
suppliers by the diffusion mechanism. It is the pial arteriolar network, with the walls of arterioles permeable to oxygen, that presents a 
most probable source of oxygen for the sulcal CSF [16,22,80]. The close values of PO2 in both the arterioles and the CSF would further 
preclude a fast oxygen supply rate by diffusion. Oxygen supply there may be realized through the CNF mechanism instead.

Conclusion
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