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Immunosenescence describes the decrease in immune function with advancing age, a phenomenon that is associated with changes 
in the B and T lymphocyte populations. CD8+ T cells display the most dramatic phenotypical and functional changes within the T 

changes within the CD8+ T cell population, and assesses the contribution of chronic CMV infection to immunosenescence. We propose 
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from persistent viral infection require detailed examination. Here, the impact of chronic cytomegalovirus (CMV) infection on an 
ageing individual’s immunity, and subsequent T lymphocyte responses to viral stimulation, are discussed. Other persistent viral 
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of cells: it is a phenomenon of decreased function, involving changes to both innate and adaptive immunity and a dysbalance 

as a cause of death among the elderly has risen in recent years in Australia, representative of developed countries, highlighting the 
aged immune system’s decline in functionality and the impact this has on morbidity and mortality [12]. Alterations of the immune 
system are considered a natural process during ageing but it is evident that persistent viral infections have severe consequences due 

the immune response are diverse and it is for this reason that understanding the pathogenic alterations of immune functions 

development of immunosenescence [14].
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system occurred early in the history of multicellular organisms. Innate immunity involves soluble factors that are essential for the 
detection of exogenous antigens to ensure either the elimination of pathogens or their containment until activation of the adaptive 

[15,16]. Activation of the innate cellular repertoire by interaction with viruses evokes a strong γδ T cell response. In addition, 

and cell-mediated arms, orchestrated by B lymphocytes and T lymphocytes, respectively, in which each clone expresses cell surface 

immune dysregulation [22].

advantages for cells to reach maturity. As with the innate immune system, adaptive immunity is associated with immunosenescence 

selected for expansion from the cell repertoire and memory cells are produced; however, this successful means of response may 
become compromised in people over 50 years of age [23]. Changes with age in the adaptive immune response have been noted 
most in the T cell population. It is proposed that the long-time proliferation of naive T cells results in cell-intrinsic dysfunction 
and a reduced clonal naive T cell population, as seen in elderly subjects, consequently limiting the immune system’s ability to 

an increased concentration of pre-existing antibodies which may act to mask a prevailing reduced responsiveness that appears to 

picture of immune regulation is set to be established.

has successfully undergone central selection within the thymus but has not yet encountered its cognate antigen in the periphery. 
Upon activation and proliferation triggered by a novel encounter with a pathogen, a naive T cell will produce an acquired immune 

T cell population are connected to thymus involution whereby homeostatic proliferation occurs in order to sustain the population 

cell population that is caused by the immune system’s endeavour to maintain homeostasis appears to contribute to age-related 
immune defects with notable changes occurring within the CD8+ T cell compartment. Hence, the study of CD8+ T cells aims to 
characterise these alterations in the aged immune system by assessing functional, phenotypic and proliferative responses across 
the human lifetime.
Functional Analysis to Assess Changes in the T Cell Population: Assessment of cytokine production by T cells is commonly 

activation and therefore are an important mediator of antiviral immunity [32]. Numerous cytokines are produced by CD8+ T 
cells in response to stimulation by antigen. Levels of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-2 
and lysosomal-associated membrane protein 1 (also referred to as CD107a) have proven to be extremely reliable indicators of 
functional behaviour. Each may be measured at the level of protein expression, typically by enzyme-linked immunosorbent assay 

+ T cell response is a marker used to determine the reactivity of T cells and therefore the selection 

population [33]. It has been suggested that polyfunctional T cells that produce simultaneously IFN-γ, TNF-α, IL-2 and CD107a are 
critical to control of infection [34-38].

in detail [39-43]. IFN-γ is expressed by activated CD8+ T cells and binds to the IFN-γ receptor that is expressed on all nucleated 
cells. Its antiviral properties include induction of macrophage activation. Furthermore, IFN-γ induces surface molecule expression, 

and regulation of immune cells [32].
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IL-2 is secreted following autocrine activation of T cells via antigen binding and CD28+ co-stimulatory signals. IL-2 functions as 
a T cell chemoattractant that stimulates activated leucocytes to proliferate and promotes CD8+

an important factor involved in self-tolerance and homeostasis [32]. CD107a is located in the cytotoxic granule membrane of 
activated CD8+ T cells, and which, upon cell activation and granule exocytosis, is expressed transiently, thus making this protein 
ideal as a marker of degranulation [44,45].

Phenotypic Analysis to Characterise Changes in the T Cell Population: Assessment of T cell phenotypic markers have produced 
+

[46]. However, owing to the inherent limitations of conducting clinical trials, much of what has been learned is owed to the experi-
mental mouse model. Studies in mice have shown that functionally exhausted T cells display multiple co-stimulatory molecules 
[47]. In order to assess the phenotype of T cells, programmed cell death protein 1 (PD-1), T cell immunoglobulin mucin domain-3 
(Tim-3), lymphocyte activation gene -3 (LAG-3) and CD244 are consistent determinants.
PD-1 and Tim-3 are linked with CD8+

+ T cells and transmit inhibitory 
signals that reduce proliferation, thereby controlling the accumulation of these T cells. Blockade of the PD-1 pathway in CMV-
infected mice has been shown to restore the function of exhausted CD8+ T cells and therefore to reduce viral load. In addition, 
blocking of the Tim-3 pathway increases proliferation and cytokine secretion by CD8+

and homeostasis [53-55]. CD8+ T cells express LAG-3 at low levels; however, further to antigenic stimulation, LAG-3 expression 
increases dramatically [55]. Lastly, CD244 is a member of the group of signalling lymphocyte activation molecules (SLAM) which 

+ T cells. Cross-linking of CD244 can promote the duel function of occupation and activation 

Proliferative Analysis to Characterise Changes in the T Cell Population: Intracellular expression of Ki67 as a marker of in 
vivo
following antigenic exposure. Ki67 is associated with cellular proliferation and is a marker used frequently for determining the 
growth fraction of a cell population due to its presence in all active phases of the cell cycle and mitosis [57-59]. CD69 is an early 
activation marker that is detectable within an hour of ligation of the TCR complex and is a T cell activation and proliferation co-

Suppression of T cell proliferation may also be measured in vitro by a variety of standard assays [62].

Figure 1: 
+

et al., 2009 [127].
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Figure 2: et al., 2013 [128].

CD8+ T Cell Response to Viral Antigens
+

CD8+

histocompatibility complex (MHC) class I molecules on the surface of infected cells or antigen-presenting cells (APC) [64]. A 
peptide/MHC class I complex is formed within an infected cell and transported to the cell membrane, which is targeted by CD8+ 
TCR [65,66]. Naive T cells are activated in response to the viral antigens causing T cells to undergo expansion with the aim to control 
the viraemia. Recognition by CD8+

2) [67]. However, persistent viral infections, of which CMV has been the most studied, drive the memory T cell pool into a further 
restricted repertoire in which the T cell population does not contract but remains to accumulate at a high frequency (Figure 3). 

stimulation of T cells over a lifetime and maintenance of viral latency together contribute to the accumulation of memory T cells 

show activation towards a single viral epitope, indicative of the vast commitment of the immune system to managing this one 

Consequences of Immunosenescence

the aged immune system to respond to vaccines and defend against pathogens. Several studies have documented that the immune 

the young (65-80% protection) where poor response correlates with the expanded CD8+ T cell population [71-73]. It is therefore 
reasonable to speculate that the distortions in the T cell population reveal an immune system with functional impairment, 
particularly the CD8+ T cell compartment.
Age-Related Changes to CD8+ T Cells: A diverse repertoire of T cells is maintained by continual replenishment in the thymus 

microenvironment and T cell progenitor population but continues to remain active, albeit in a limited capacity, until advanced age 

thymus, existing T cells increasingly proliferate (sometimes changing phenotype to memory cells), which depletes further the naive 
T cell compartment [30,74]. In addition, exposure of the ageing host to antigens during their lifetime expands further the memory
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T cell pool. Lastly, among memory cells, a great many clonally expanded T cells form over time that eventually come to dominate 
the T cell memory pool, thereby restricting further cell diversity [75,76]. Such behaviour collectively contributes to the decline in 
diversity of the CD8+ T cell repertoire. Consequently, CD8+ T cell responses become inadequate upon encountering pathogens to 
which the person has not had prior exposure.

Figure 3:
et al., 2012 [129].

memory T cells accumulate in larger numbers; (ii) due to persistent antigen exposure the naive T cell population decreases; (iii) 
due to the physical limit of T cells in the body, there is an imbalance in the ratio of memory to naive T cells as daughter memory 
cells outnumber their parental naive cells.

Role of Latent Infections in Driving Immunosenescence 
Immunosenescence presents as a multifactorial process that imposes a pressure on the body’s homeostatic mechanisms to maintain 
a continuous pool of T cells for the majority of adulthood that is potentially responsible for their exhaustion and functional 

particular exposure to chronic infections including CMV, plays a vital role in directing the exhaustion of T cells and induction of 
+ T cells, i.e. by the process 

It has been proposed that the continued and lengthy stand-by status of the host’s T cells demanded by persistent CMV infection 

in antigen processing and presenting, cytokine environment and maintenance of memory lymphocyte populations give rise to 

changes are poorly understood immunologically and from a clinical perspective have profound implications for the quality of life 
of elderly individuals [14].
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Cytomegalovirus (CMV)
CMV is a ubiquitous beta human herpes virus that can infect a wide range of human tissues with subsequent secretion of the virus 

in the notable number of host-tailored genes, which are usually non-essential for viral replication but that may play a role in 
virus-host interactions [79]. It is estimated that CMV infects 50-90% of a given population, depending on socioeconomic status, 
geographical location and hygiene levels [80,81]. In Australia, the seroprevalence rate is approximately 72% over the age of 50 
years; however, in certain ethnic groups, seroprevalence approaches 90% of an infected population [82,83]. Transmission occurs 

CMV Infection

infection on which a large fraction of the immune system of the elderly is focused. Endothelial and epithelial cells are primary 
targets for infection, with particular predilection for the cells of the salivary glands and kidneys that are shed throughout body 

to extensive viral replication and subsequent infection and/or latent infection resulting from CMV transcription programme 

level of lytic replication [87,88]. Recurrence occurs by reactivation of the endogenous virus within a seropositive individual [3,89]. 
Changes to the distribution of immune cells and to the selection of memory cells are rapid during primary infection, yet the precise 
sites where viral latency and reactivation are established have not been determined [90].

Establishment of Viral Latency and Reactivation
A common feature of CMV is to establish lifelong viral latency from which the viral genome is able to reactivate under favourable 
conditions. However, the extent to which latency is a mechanism for viral persistence is not known. Reactivation of CMV in 

of reactivation and the consequences of this on the ageing immune system. While the viral genome (genomic viral DNA) of 

nature of the cellular environment that CMV encounters plays a critical role in determining the characteristics of infection and 

de novo viral gene 
expression; (ii) productive infection is interrupted prematurely; and (iii) genes that are unrelated to replication but are necessary 
for successful latency are activated [63,91-94].
Evidence suggests that viral latency is a highly dynamic state, the mechanisms for which are remarkably varied. However, it is 

inactive state [95,96]. Recent studies have concluded that during latent infection expression of numerous viral gene products and 
production of cytokines, in particular TNF-α, may orchestrate substantial changes in latently infected cells and their surrounding 
environment, thereby facilitating the promotion of viral reactivation [84,91,97].

+ T Cell Response
During infection, multiple components of the host immune system interact with CMV including NK cells, antibodies, CD4+ T 
cells and CD8+ + T 

+ T cells include cytotoxicity and cytokine production, each of which 

cell cytoplasm and upon CD8+ TCR activation, lysosomal-associated membrane proteins (LAMP) including CD107a and CD107b 
+

+ T cell function has clinical relevance and is therefore integral to monitoring CMV activity [46,68,99-102].
+ T cells that remains in circulation 

+ T cells contain cytotoxic granules and potentially produce IFN-γ while awaiting viral 
+

phenotype displaying reduced CD28, CD27, CCR7 and CD62, increased CD57 and re-expression of the surface marker CD45RA 
+ T cell compartment showed that CD4+ CD28  and CD8+ CD27  T cell 

+ CD28  compartment, but in particular a massive rise in the 
CD27 CD8+ T cell population in CMV-positive older individuals with fewer naive T cells [106-109]. Comparable results were at-
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ained by studying a cohort of CMV-positive elderly individuals (60+ years of age) who displayed approximately 20% more T cells 
in comparison to CMV-negative individuals [110]. In addition, the elderly displayed a 41% increase in CD8+ T cells associated 

age [111,112]. Although the naive T cell pool diminishes naturally with age, it is particularly low in CMV-positive individuals [110]. 
+ T cells reduces the CD4:CD8 ratio, a hallmark of immunosenescence. CMV has additionally 

+ T cells indicated that clonal 
populations increase with age. Expansion results in approximately 25% of the T cell compartment and increases in the CMV-

unique [103].

a restricted repertoire. Although it appears that senescence is displayed at the level of the individual cell, the total number of cells is 

+ T cells, which places the elderly into an at-risk group [113]. It has been suggested that these cells are 
dysfunctional since a smaller proportion of T cells from aged donors respond to antigenic stimulation in vitro than that from young 

the question as to whether the ‘senescent’ cells that remain in circulation are deleterious or necessary to control infection, and, if 

as seen during CMV infection in the elderly, the CD8+ T cell pool becomes exhausted, causing a functional loss of memory cells 
[102,104]. During persistent viral infections, there are substantial alterations to CD8+ T cell phenotype and functionality due to the 

loss of CD8+ T cell function (termed ‘exhaustion’) [114]. In turn, this implies that the exhaustion of both naive T cells and age-
dependent, replicative memory CD8+ T cells is accelerated by CMV infection, especially in the absence of an adequate renewal of 

for auto-inhibition of sustained T cell activation and production of IL-2. In addition, a decrease in telomerase activity due to the 
loss of CD28-mediated Akt signalling (involved in cell proliferation and transcription) contributes further to the exhaustion of T 
cells [116].
Shortened Telomere Length: Telomeres form a complex protein-DNA structure at the ends of chromosomes that protects them 
from degradation. Changes in the structure and function of telomeres are thought to play a role in malignant transformation 

+ T cells [118-120]. 
Infection with CMV results in a large pool of CD8+

produces a CD8+ T cells subset with shortened telomere lengths that is maintained for three years post-infection [121]. Although a 

who are CMV-positive displayed a loss of 94 base pairs per year in comparison to CMV-negative individuals who showed a loss 
+

notion that infection with CMV accelerates, or at least assists, the development of immunosenescence.

It is becoming evident that the interaction of CMV with the aged immune system drives production of dysfunctional T cells, 
leading to the development of immunosenescence. In the elderly, the response of CD8+ T cells can be pronounced and is possibly 

longitudinal and subsequent OCTO/NONA-immune studies, from which the mortality predictive biomarker of immune health 

+

of immunity in survival and the impact of lifetime exposure to pathogens raise the issue of whether immunological age is a better 

Future Research Directions

interactions with pathogens. While it is recognised that dysregulation of the immune system that results in increased susceptibility
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to disease is linked with ageing, the causes have not been determined. As discussed, CMV appears to be a driver behind the 
observed phenomenon of CD8+

to CMV, which appears to increase with age, represents an enormous commitment of resources to controlling a single virus, 

+

Conclusion
Why and how CD8+

dose-dependent toxicity. In addition, drug-resistant CMV can occur [85,126]. Future investigations should focus on the functional 

interaction between the aged immune system and CMV infection.

CD8+ T cell diversity and the capacity of the host cell to counter challenge by further pathogens. It may be hypothesized that 
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