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Mesenchymal stem cells (MSCs) have been found in almost all tissues and due to their regenerative properties represent promising 
tools in cell-based therapy. Role of MSCs in tissue repair is strongly governed by their interplay with immune cells and regulating 
factors. In addition to the first and most investigated MSCs isolated from bone marrow (BM-MSCs), other tissues were also reported 
as abundant sources of MSCs, such as peripheral and menstrual blood, fetal and perinatal tissues, adipose and dental tissue. Although 
BM-MSCs have been shown to be immunosuppressive in both in vitro and in vivo conditions, multiple evidences indicate that these 
cells have immunogenic properties, making their immune privileged status at least questionable. Besides their similarity with BM-
MSCs, MSCs isolated from alternative sources manifest significant differences in their phenotype, functionality, immune status and 
activity. Complexity of interactions of BM-MSCs with the immune system is also found for MSCs isolated from other tissues. Due to 
specific conditions present in different tissues, variability in the immune repertoire of resident MSCs is to be expected and must be 
taken into consideration during experimental or clinical protocol planning.
Keywords: Mesenchymal stem cells; Immunomodulatory; Bone marrow; Inflammation

As tissue-derived stem cells, mesenchymal stem/stromal cells (MSCs) have been found in almost all vascularized tissues where 
they are engaged in long term maintenance of tissue homeostasis and repair [1]. Until recently, the concept of MSCs as defined by 
The International Society for Cellular Therapy (ISCT) [2], enabled classification of stem cells derived from various tissues, such 
as bone marrow, umbilical cord, adipose tissue, skin, dental tissues, peripheral blood, muscle, and amnion etc., based on their 
immunophenotype and trilineage differentiation potential. Recent analyses pointed out that use of MSCs in preclinical and clinical 
approaches failed to keep pace with established clinical applications of hematopoietic stem cells (HSCs). This raised concerns 
about the necessity to further standardize validation assays and compare MSCs obtained in different laboratories [3]. Although 
MSCs isolated from various tissues meet the same proposed criteria of ISCT (Table 1), it is questionable whether all types of 
tissue-derived MSCs possess similar paracrine (immunomodulatory, trophic and chemoattractant) activities, which signed them 
as Medicinal Signaling Cells [4]. Finally, the authors of the aforementioned criteria for MSCs characterization have suggested their 
extension, marking the importance of immune activity and paracrine effects of MSCs [5-7].
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Although MSCs have been labeled as immunosuppressive both in vitro [8,9] and in vivo [10,12], some reports suggest that these 
cells can possess immunogenic properties as well [13,14]. Due to their importance in tissue repair, process associated with local or 
systemic inflammatory microenvironment, it is highly important to understand interactions between MSCs and immune system 
before their potential application in regenerative medicine [15]. MSCs sense stimuli in their microenvironment, which can govern 
their differentiation fate, as well as their immunomodulatory properties [16]. Moreover, in order to find the most suitable source 
of MSCs with desired properties, many authors reported immunomodulatory activities of MSCs isolated from various tissues, 
indicating possible mechanisms of action (Table 2). Also, many studies compared the immunomodulatory capacity of various 
MSCs (Table 3). As has been observed by Pevsner-Fisher [17], inter-population heterogeneity of MSCs isolated from various 
donors and tissues, is the main reason for great variability in experimental results. Heterogeneity in observed data might result 
from different nature of isolated MSCs from various tissues, examined mechanism of activity which could be predetermined for 
certain type of MSCs, experimental design etc. Because of the high importance of MSCs immune status in their potential clinical 
application, the inconsistent results require additional extensive review [18]. Here, we aim to give an overview of recent data about 
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immunomodulatory capacity of MSCs, and justifiably speculate that tissue origin and specific microenvironment adjust the 
immune status and activity of MSCs in vitro and in vivo. 

SourceNegative markersPositive markersTissue-origin

Kern et al., Barcia et al, Yanez 
et al

CD14, CD11b, CD19, CD31, CD34, CD45, 
CD133, HLA II, CD144, CD80, CD62L, CXCR4

CD90, CD105, CD73, CD44, 
CD29, HLA I,CD106 b, CD166Bone marrow

Kern et al, Yanez et al., 
Trivanović et al.

CD14, Cd11b, CD34, CD45, CD133, HLA II, 
CD144, CD80, CD62L, CXCR4, CD33, CD235

CD90, CD105, CD73, CD44, 
CD29, HLA I,CD106 b, CD166Adipose tissue

Barcia et al., Zhuang et al., Chen 
et al., Trivanović et al.

CD11b, CD14, CD19, CD31, CD34, CD45, HLA 
II, CD80, CD86

CD90, CD105, CD73, CD44, 
CD29, CD106Umbilical cord

Kern et al., Jing et al.CD14, CD34, CD45, CD133, HLA II, CD144, 
CD38

CD90, CD105, CD73, CD44, 
CD29, HLA I, CD106 bUmbilical cord blood

Krstić et al., Trivanović et al., 
Chong et al., Li et al.CD11b, CD45, CD34, CD19CD90, CD105, CD73, CD44, 

CD29, CD166, CD140aPeripheral blood

Miranda et al.CD14, CD34, CD45, CD31, HLA II, EPCAM, 
CD117, CD271, CD146

CD90, CD105, CD73, CD44,
HLA I, CD49Menstrual blood

Nikolić et al., Vasandan et al.CD11b, CD33, CD34, CD45, CD235aCD90, CD105, CD73, CD44Dental pulp

Chen et al., Zhang et al.CD11b, CD14, CD34, CD45, CD31, HLA II, 
CD80, CD86

CD90, CD105, CD73, CD44, 
CD29, CD39, HLA IGingiva

Vasandan et al., Okić Djordjević 
et al.CD14, CD45, CD34, CD19, CD235, CD11bCD90, CD105, CD73, CD44, 

CD29Periodontal ligament

Table 1: Comparison of immunophenotype of MSCs isolated from various tissues

SourceMechanisms of immunomodulationTissue-origin

Riberia et al., Yen et al., Cahill 
et al.

Production of IDO, PDL‐1, PGE2, TGF‐β, IL-6, IL-10, HLA-G5, HGF. Inhibition of 
CD4+, CD8+, B cell, NK cell. Induction of Treg, CD14 CD11b+CD33+ (MDSCs), 

tolerogenic DC
Bone marrow

Riberia et al., Crop et al., Hof 
Nahor et al., Garimella et al.

Production of IDO, PDL‐1, PGE2, TGF‐β, IL-6, IL-10, HLA-G5. Inhibition of CD4+, 
CD8+, B cell, NK cell. Induction of Treg, tolerogenic monocytes, BregAdipose tissue

Riberia et al., Barcia et al., Castro 
Manrezza et al., Saiedi et al.

Production of PDL‐1, PGE2, IL-10, HO-1, HLA-G. Inhibition of CD4+, CD8+, B cell, 
NK cell. Induction of Treg. Inhibition of maturation of DCUmbilical cord

Chen et al., Schwaki et al., Chen 
et al.

Production of GRO chemokines, IL-10, TGF‐β, HGF. Inhibition of proliferation of 
lymphocytes. Induction of MDSCs.Umbilical cord blood

Trivanović et al., Ljujić et al.Production of IL-10, TGF‐β. Inhibition of proliferation of lymphocytes. Decresed 
cytotoxity of NKT and CD8+ cells. Induction of Treg.Peripheral blood

Luz-Craford et al., Bozogmehr 
et al.

Production of IDO, PDL‐1, PGE2 and TGF‐β, IL-6, IL-10, inhibiton of generation and 
maturation of DCMenstrual blood

Trivanović et al., Tomic et al., 
Zhao et al.

Production of IDO-1, TGF‐β. Expression of Fas ligand. Inhibition of proliferation of 
lymphocytes. Induction of apoptosis of T cells.Dental pulp

Zhang et al., Chen et al.Production of IL-10, IDO, iNOS, COX-2. Inhibition of proliferation of lymphocytes. 
Induction of TregGingiva

Liu et al., Liu et al.Production of   IL-10, IL-6. Expression of PDL-1. Inhibition of proliferation of lym-
phocytes. Induction of Treg. Suppression of activation of B cellsPeriodontal ligament

Table 2: Immunomodulatory activities of MSCs isolated from various tissues

Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells
Most of MSC paradigms are derived from investigation of bone marrow MSCs (BM-MSCs), first defined by Friedenstein in 
1970’s [19-21]. In the literature, BM-MSCs are frequently labeled as the “holy grail” cells, with desired properties: hematopoiesis 
support [22,23], multipotent differentiation capacity, self-renewal ability [2], and immunoregulatory potential [24]. However, it 
is well known that MSCs isolated from bone marrow represent a heterogenic population. Similar to HSCs, a theoretical model 
has provided the concept of mesenchymal cell hierarchy where MSCs lie at the top, progressing through stages of differentiation 
in an orderly manner to give mature cells of bone, fat, muscle and cartilage [25]. Therefore, intra-population heterogeneity of 
MSCs is a consequence of MSCs phenotype plasticity on the single-cell level [26] where bulk MSCs population consists of a small 
subpopulation of multipotent stem cells and subpopulation of bi- and uni-potent progenitors [17,27,28].

BM-MSCs occupy distinct niches in bone marrow: endosteal, stromal and perivascular niche. Because in vitro cultured pericytes 
share the phenotype and differentiation capacity with BM-MSCs, there are many studies which aim to elucidate relationship 
between them. Major question is whether BM-MSCs and pericytes are same cells which adjust their properties in response 
to microenvironment stimuli [16,29]. Although the origin of MSCs remains elusive, pericytes have recently emerged as likely 
candidates for an in vivo native counterpart of the ex vivo expanded MSCs [30]. However, since MSCs were also found in non-pericyte
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Although heterogeneity of bulk MSCs in the context of their multipotent differentiation capacity has been described, other 
functional properties, such as immunodulatory properties remain to be further investigated. However, it is rational to assume 
that tissue microenvironment which shapes their multipotency, also manages their immune status and activity, thus giving more 
complexity to experimental and clinical approach, in autologous as well as in allogeneic settings [29].

regions, their origin still remains questionable [31]. In general, MSCs are present in all vascularized organs and tissues, while their 
current status regarding origin, properties and function in vitro and in vivo is not well defined and is still unclear due to obvious 
difference between native and culture-expanded MSCs [32]. 

Many preclinical models have demonstrated that BM-MSCs can migrate to sites of inflammation and have immunomodulatory 
effects through direct cellular contact with immune cells or through the production of immunosuppressive soluble factors [33]. 
Therefore, there are number of clinical studies that use BM-MSCs to treat immune-mediated diseases, such as: Graft versus Host 
Disease (GVHD) [34], aplastic anemia [35], Crohn’s disease [36], multiple sclerosis [37], and ischemic heart failure [38].

Immunosuppressive properties of BM-MSCs

After establishing their immunomodulatory potential in vitro, BM-MSCs have been introduced into the clinical settings [39], 
in which these cells show their therapeutic effects in treatment of acute grade IV GvHD after bone marrow transplantation. It is 
important to mention the lack of optimization protocols considering BM-MSCs and their products including isolation, expansion 
and functionality, and especially for retention of their immunomodulatory potential [40,41], since these efforts are crucial for safe 
and efficient cell-based therapy.

Recently, many cellular and molecular mechanisms involved in the interaction between BM-MSCs and various participants in the 
inflammation process have been highlighted. Depending on their type and intensity, inflammatory stimuli affect MSCs in a way to 
modulate their ability to suppress the immune response in some cases or to enhance it in others [42].

SourceStronger effects/similarityImmunomodulatory activityMSCs

Jin et al.UCBReduced expression of inflammatory cytokines: 
IL-1α, IL-6,  IL-8BM, AT, UCB

Li et al.ATProduction of IDO-1, PGE2 and TGF-βBM, AT

Yang et al.CHInhibition of IFN-γ production by lymphocytesBM, AT, UC, CH

Yamaza et al.SHEDsInduction of Treg and inhibition of Th17 cellsBM, SHEDs

Yoo et al.Similar effectsInhibition of proliferation of lymphocytes. 
Expression of HGF, IL-10, TGF-β,  COX-2BM, AT, UCB, UC

Trivanović et al.Similar effects. Variability in 
gene expression

Inhibition of proliferation of lymphocytes. 
Expression of  TGF-β1,  COX-2UC, AT,PB, DP

Zhang et al.Similar effectsInhibition of proliferation of lymphocytes.BM, G

Yanez et al.Similar effectsInhibition of proliferation of lymphocytes.BM, AT

Castro-Manrreza et al.BM, UCInhibition of proliferation of lymphocytes. 
Induction of CD4+CD25+CTLA-4+BM, UC, UCB

Ribeiro et al.BM, AT regarding inhibitory 
effects on B cells

Inhibition of T cell, B cell and NK cell-mediated 
immune responseBM, AT, UC

Luz-Craford et al.BMInhibition of T cell response. Production of IDO, 
PDL‐1, PGE2,TGF‐βBM, Men

Wada et al.Similar effects. Variability in 
gene expression

Inhibition of proliferation of lymphocytes. 
Expression of TGF-β, HGF, IDO-1BM, DP, PDL

BM: Bone marrow; AT: Adipose tissue; UCB: Umbilical cord blood; UC: Umbilical cord; CH: Chorion; SHEDs: Exfoliated deciduous teeth; PB: 
Peripheral blood; DP: Dental pulp; G: Gingiva; Men: Menstrual blood; PDL: Periodontal ligament 
Table 3: Results of studies which investigated immunomodulatory capacity of various MSCs

BM-MSCs express low levels of human leukocyte antigen (HLA) major histocompatibility complex (MHC) class I antigens, do 
not express co-stimulatory molecules (B7-1 and -2, CD40, or CD40L), and can be induced to express MHC class II antigens and 
Fas ligand. However, low expression of MHCII and co-stimulatory molecules indicates that direct cell contact is not the main 
mechanism of BM-MSCs immunomodulatory activity [40,43]. These features have often been used to explain their “immune 
privileged” status in allogeneic hosts. Furthermore, BM-MSCs have been shown to inhibit dendritic cell maturation [44], B cell 
[45] and T cell proliferation [46] and differentiation [47], impair natural killer cell activity [48], as well as support the generation 
of suppressive immune cells such as: regulatory T cells (Tregs) [43,49], myeloid derived suppressor cells (MDSCs) and tolerogenic 
dendritic cells (tDCs) [50]. 
Combination of many soluble factors are meritorious for immunosuppressive activity of BM-MSCs, such as: indoleamine 
2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS), cyclooxygenases (COX), metabolite prostaglandin E2 (PGE2), 
tumor necrosis factor α-induced protein 6 (TSG6), transforming growth factor β (TGF-β), soluble form of HLA-G5 [35,44]. 
Production of these factors is increased by inflammatory microenvironment stimuli, such as immune cells presence, inflammatory 
cytokines or activation of Toll-like receptors (TLRs) [40,51]. 
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Immunogenic properties of BM-MSCs
Despite large number of data about immunosuppressive activity of BM-MSCs, there are few studies describing their immunogenic 
nature [52-54]. Since immunogenicity is of major concern in transplantation, clinical safety and efficacy of BM-MSCs application 
is therefore questioned. As described above, even though BM-MSCs have expressed low levels of MHC I molecules and lack 
MHC II antigens, in presence of inflammatory conditions and cytokines (interferon (IFN)-γ, tumor necrosis factor (TNF)-α) 
in culture, expression of these MHC molecules increases [40,51,55,56]. Strong influence of microenvironment on the immune 
status of MSCs has been observed in an experiment using diabetic rats where allogeneic MSCs have been transplanted into tail 
vein or pancreas. During the later phase of transplantation, BM-MSCs which have been transplanted into pancreas develop an 
immunogenic phenotype, while BM-MSCs which have been transplanted into tail vein stay immunosuppressive [53]. These 
findings provide evidence that different microenvironment, even in one recipient, can condition opposite immune properties of 
BM-MSCs. Moreover, similar to all nucleated cells, BM-MSCs express MHC I molecule, and can induce allogeneic immune cell 
responses, as it has been demonstrated by the lysis of BM-MSCs by HLA class I mismatched memory CD8+ T cells [57]. Also, BM-
MSCs are also susceptible to be lysed by autologous IL-2-activated NK cells, via expression of MHC I molecule [58]. These findings 
suggest that despite their immunoregulatory properties, in vitro cultured BM-MSCs can be recognized as immunogenic by the 
immune system. Also, presence of inflammatory factors can induce expression of MHC class II in BM-MSCs, where these cells 
present exogenous antigens to T cells, similar as dendritic cells or macrophages [40,56]. In addition, it has been observed that BM-
MSCs stimulate proliferation and differentiation of naïve and memory B cells into immunoglobulin secreting plasma cells [59,60].

Moreover, it has been shown that administration of MSCs elicits innate immune attack [61] and allograft rejection in kidney 
transplantation [62], warning about the possibility of indirect or semi-direct allo-recognition of MSCs [33]. Taken together, 
these data indicate that BM-MSCs can function as immune cells. Despite inability of allogeneic BM-MSCs to be immunogenic as 
unmatched fibroblasts or HSCs [40,63], their immune privileged status is not uncontested anymore and it has to be reassessed, 
especially in the context of transplantation immunology and regenerative medicine.

Transient immunomodulatory properties of BM-MSCs: MSC1 and MSC2 phenotype
The observed changes of the immune profile of BM-MSCs, ranging from immunosuppressive to immunogenic draw attention to 
existence of transient immune status of these cells. Waterman et al. has explained the paradigm of pro-inflammatory MSC1 and 
anti-inflammatory MSC2 phenotype, similar to that in M1 and M2 macrophages. This study has showed that different TLR 2, 3 
or 4 ligands shape different profiles of BM-MSCs by stimulating expression and production of immunosuppressive (IL-10) or 
immunogenic molecules (IL-6) [51]. As previous evidence has demonstrated that MSCs immune profile can change depending on 
the transplantation site and microenvironment stimuli [52,53], it is justifiable to assume the immune status of MSCs as transient 
[55,56,59,64]. In this context, it is important to acknowledge the physiological nature of MSCs whose fate is determined by their 
physiological setting. Considering their inherent ability to differentiate, special notice must be given to indications that MSCs 
immune status could be related to their differentiation state. For instance, it has been shown that osteogenic differentiation can 
inhibit expression of MHC II molecules in BM-MSCs, which was previously stimulated with IFN-γ [65,66]. Contrary, while BM-
MSCs show immunosuppressive properties in vitro, their chondrogenic differentiation has been shown to cause immunogenicity 
in vivo by stimulating proliferation of T cells [67]. In general, priming of MSCs with IFN-γ is an efficient approach for stimulation 
of MSCs to produce immunosuppressive molecules. However, it was observed that although in vitro expanded IFN-γ-primed 
MSCs were immunosuppressive, their administration in vivo led to the loss of their immunosuppressive properties and finally 
immune rejection [64]. Taken together, it is important to consider multiple factors present during ex vivo cultivation and in 
vitro manipulation of BM-MSCs prior to their in vivo application, such as nutrients in media, oxygen level, growth factors or 
serum quality, which could interweave with the immune status of MSCs [68]. Moreover, it is possible that MSCs balance between 
immunosuppressive and immunogenic profile through active interplay with immune cells and regulatory factors present in native 
or allogeneic microenvironment. This ability of MSCs to adjust their immune profile is related to the plasticity of their immune 
status [69].

Immunomodulatory Properties of MSCs in Peripheral Blood
Existence of circulating MSCs has been reported when donor MSCs have been found to be engrafted in bone marrow after allogeneic 
transplantation of mobilized peripheral blood (PB) stem cells [70]. Previously, Wexler et al. provided data about low frequency of 
isolated PB-MSCs in comparison to bone marrow and umbilical cord blood [71]. The presence of a small number of MSCs has been 
detected in mobilized PB of healthy patients as well as those with malignancies [71,72]. Moreover, PB-MSCs have been isolated 
from non-mobilized peripheral blood of healthy donors and have met the criteria of ISCT [73,74]. It has been demonstrated that 
PB-MSCs can be mobilized to PB using granulocyte colony-stimulating factor (G-CSF), although this approach is not specific for 
MSCs mobilization, but for HSCs/progenitor cells or blasts [72]. It has been shown that PB-MSCs have immunosuppressing role 
in vivo by increasing the level of Th2 and decreasing the level of Th1 cytokines, while stimulating generation of CD4+FoxP3+ T 
cells and producing IL-10. Thus, by impairing immune response, PB-MSCs have also been shown to promote breast tumor growth 
[75]. Furthermore, it has been demonstrated that osteogenic differentiation of PB-MSCs plays a crucial role in bone tissue healing 
[76]. While presence of circulating MSCs is to be expected in the peripheral blood of a patient, when they migrate toward sites of 
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inflammation or injury, their presence in peripheral blood of healthy donors opens a question about their origin. However, these 
findings suggest that peripheral blood could be a promising source of MSCs, while their immune status and activity need to be 
further elucidated.

Similar as BM-MSCs, WJ-MSCs express MHC class I (HLA-ABC) at low levels but do not express class MHC class II (HLA-
DR) and co-stimulatory antigens such as CD80, CD86, CD40 and CD40L implicated in activation of both T and B cell response. 
Therefore, WJ-MSCs are considered for both autologous and allogeneic use [94]. Contrary to BM-MSCs, treatment with IFN-γ did 
not induce expression of HLA-DR in WJ-MSCs, suggesting their less immunogenic nature than BM-MSCs [95]. Moreover, it has 
been shown that WJ-MSCs produce larger amounts of IL-10, TGF-β, heme oxygenase-1 (HO-1) and HLA-E, HLA-G and HLA-F 
than BM-MSCs [84,96,97]. However, it has been shown that exposure to IFN-γ induce immunogenicity of transplanted WJ-MSCs, 
thus opening a question whether it is possible to maintain the immunosuppressive profile of WJ-MSCs upon transplantation [98].

Immunomodulatory Properties of MSCs in Menstrual Blood
Regeneration of human endometrium is dependent on resident epithelial and stromal stem/progenitor cells. One of the layers of 
endometrium, signed as functionalis layer, is shed during menstruation and is a major part of the menstrual fluid. First evidence 
about stem cells in endometrium has been obtained in 2004 by Chan et al. [77], while MSCs were first isolated from endometrium 
2007 by Meng et al. [78]. Menstrual blood could be available, abundant, low cost and free of ethical concerns source of MSCs 
(MenSCs) [79,80]. Besides their supportive role in the expansion of hematopoietic stem cells [81], it has been demonstrated that 
MenSCs possess lower immunosuppressive properties when compared to BM-MSCs, because they produce lower levels of IDO, 
PDL‐1, PGE2 and TGF‐β1 [82]. However, it has been observed that MenSCs impair maturation of DC, an effect where IL-6 and 
IL-10 has been proposed to be involved [83]. Although MenSCs represent promising MSCs type, their immune properties and 
mechanisms involved in the regulation of their immunomodulatory activity have to be investigated in detail.

Immunomodulatory Properties of MSCs in Fetal and Perinatal Tissues
MSCs can be isolated from extra-embryonic tissues without ethical concerns, because these tissues are normally discarded after 
birth [84]. Fetal tissues are considered to be abundant source of MSCs and progenitor cells, obtained after normal pregnancy 
and also spontaneous abortion or stillbirth [85]. Today, MSCs has been isolated from many fetal and perinatal tissues: amniotic 
fluid (AF-MSCs) [86], human amnion membrane (HAM-MSCs) [87], chorion membrane (CM-MSCs), decidua (D-MSCs) [88], 
placenta (P-MSCs) [89], cord blood (CB-MSCs) [90], whole umbilical cord (UC-MSCs) [91] and Wharton’s Jelly (WJ-MSCs) 
[73,92]. In the literature, there are many claims about the immune privileged status of MSCs derived from fetal tissues which can 
be transplanted into the host without immune rejection [84]. In order to establish tolerogenic fetal immune system, fetal CD4+ 

T cells are forced to differentiate to Treg toward antigens expressed by chimeric maternal cells to promote self-tolerance in fetal 
tissue. Fetal cells express HLA-G for immune tolerance during pregnancy and this suggests low immunogenicity and tolerogenic 
state of fetal stem cells. This ability of fetal cells to provide self-tolerance is also known as layered immune system, which in adult 
tissue becomes more defensive [85,93].

Efficiency of WJ-MSCs and UCB-MSCs as immunosuppressive cells which inhibit proliferation of T cells has been demonstrated 
[99,100], suggesting them as alternative to BM-MSCs. In another study, it has been observed that BM-MSCs and P-MSCs have 
stronger immunosuppressive capacity than WJ-MSCs, due to generation of CD4+CD25+FoxP3+ T cells [101,102]. It was also found 
that human P-MSCs can expand CD14-CD11b+CD33+ human MDSCs which suppress allogeneic lymphocyte proliferation and 
increase the number of Treg cells [103]. In addition, UCB-MSCs produce soluble factors, such as GRO chemokine’s, which promote 
generation of MDSCs from monocyte-derived dendritic cells [50]. Interestingly, it was reported that UC-MSCs express glycocalyx 
matrix which contains TSG6 when they were exposed to inflammatory conditions. These UC-MSCs stimulated generation of Treg 
and inhibited polarization of macrophages toward pro-inflammatory M1 phenotype [104].

Taken together, fetal tissues represent a promising source of MSCs with immunomodulatory potential, although all cellular and 
molecular mechanisms involved need to be further investigated. 

Immunomodulatory Properties of MSCs in Adipose Tissue
Adipose tissue is a well-known abundant source of MSCs, which have firstly been isolated by Zuk et al. from aspirated fat [105]. 
Beside abundance, a lack of ethical concerns makes these MSCs promising cells for cell-based therapy. Adipose tissue MSCs (AT-
MSCs) persist in stromal-vascular fraction (SVF) together with pericytes, endothelial cells, preadipocytes, hematopoietic cells 
and immune cells such as macrophages, NK and T cells. Besides their role in tissue homeostasis maintenance, AT-MSCs have an 
important role in the vascularization of adipose tissue. Also, similar to BM-MSCs, AT-MSCs are known to support hematopoiesis, 
specifically stimulating generation of macrophages [106]. Distinctive to circulating macrophages, population of CD34 expressing, 
fibroblast-like macrophages with multipotency similar to AT-MSCs have been identified in human white adipose tissue [107]. 
These macrophages have M1 anti-inflammatory phenotype [108]. Some reports described adipose tissue as a resident tissue for 
hematopoietic stem/progenitor cells committed to mast cells [109] and hemangioblasts [110]. Functional properties of AT-MSCs 
are especially interesting in development of obesity, which involves change of cytokine milleu in adipose tissue. It has been reported 
that phenotype of AT-MSCs can be altered due to obesity or weight loss-related inflammation [111]. 
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The inhibitory effect of AT-MSCs on T cell proliferation has been demonstrated [9,111], and some reports have found that AT-
MSCs have stronger immunosuppressive effects than BM-MSCs [112]. However, Crop et al. has observed that, in the presence of 
lymphocytes, AT-MSCs highly express IL-6, IL-8, TNF-α, as well as immunosuppressive factor IDO-1, while they also stimulate 
proliferation of T cells and percentage of CD4+CD25+FoxP3+ cells within [113]. This discrepancy points out how different 
approaches used in experimental settings can give different results. Interestingly, it has been found that AT-MSCs actually inhibit 
activation of T cells and stimulate FoxP3 mRNA expression in activated T cells [8].
Some differences exist between bone marrow- and adipose tissue-derived MSCs for several secreted proteins, such as cytokines 
(IFN-γ), growth factors (e.g. fibroblast growth factor (FGF), hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1)), 
and chemokines (stem cell factor-1 (SCF-1)), where it has been demonstrated that AT-MSCs have more potent immunomodulatory 
effects than BM-MSCs through higher production of IDO-1 and PGE2 molecules [114]. Also, in co-culture with AT-MSCs, 
decreased production of proinflammatory cytokines, such as IFN-γ, IL-2 and IL-17, and increased secretion of anti-inflammatory 
cytokines, such as TGF-β, IL-4, IL-10 and IL-13, by stimulated splenocytes have been observed. These immunosuppressive effects 
of AT-MSCs have crucial effects on maintenance of functionality of pancreatic islets in induced diabetic mice model [115]. 
Additionally, the immunosuppressive role of AT-MSCs in rheumatoid arthritis, autoimmune disease accompanied by chronic 
inflammation, has been demonstrated, where AT-MSCs suppress T cell proliferation and increase generation of regulatory subsets 
of T and B cells [116]. Moreover, it has been shown that AT-MSCs decrease the expression level of CD8 on CD8+ cells, and this 
effect requires direct cell contact of CD14+ monocytes with CD8+ cells. Finally, AT-MSCs induce the suppressive phenotype of 
CD8+ cells and tolerogenic phenotype of CD14+ monocytes, by decreasing expression of CD80 and CD86 co-stimulatory molecules 
and, on the other hand, increasing the inhibitory receptors immunoglobulin-like transcripts (ILT)-3 and -4 [117].

As has been previously described for BM-MSCs, osteogenic differentiation can maintain hypoimmunogenic profile of AT-MSCs, 
even though they have been primed with IFN-γ and TNF-α [118].

Infection and inflammation have significant effects on the regenerative processes in dental tissues [121]. According to their 
localization in tooth, dental tissue stem cells, termed as MSCs have been classified as: dental pulp stem cells (DP-MSCs) firstly 
isolated by Gronthos et al. [122], stem cells from human exfoliated deciduous teeth (SHEDs) [123], periodontal ligament stem 
cells (PDLSCs) [124,125] stem cells from apical papilla (SCAPs) [126], dental follicle progenitor cells (DFPCs) [127], tooth germ 
progenitor cells (TGPCs) [128], alveolar bone MSCs (AB-MSCs) [129] and gingival MSCs (GMSCs) [130]. Their application 
in dental regenerative medicine is dependent of their origin and localization in the tooth, which shape their phenotype and 
functionality [131-133]. 

Human DP-MSCs express Fas ligand and are able to provoke apoptosis of T cells and this activity was followed by decreased 
number of Th17 cells and increased number of Treg cells. It has been shown that these effects are mediated by expression of 
TGF-β, HGF and IDO-1 in DP-MSCs [9,130,133,135]. Also, it has been demonstrated that SHEDs effectively inhibit proliferation 
of already activated T cells by inducing their apoptosis and moreover inducing generation of Treg, in similar manner as BM-
MSCs, yet with a stronger effect [136]. Furthermore, it has been observed that SHEDs induce an immune regulatory phenotype 
in monocyte-derived DCs cells [137]. PDL-MSC have also been shown to possess immunosuppressive capacity [138], inhibiting 
proliferation of peripheral blood mononuclear cells, by producing TGF-β, HFG, IDO-1 and PGE2 molecules [135]. However, it has 
been demonstrated that PDL-MSCs isolated from inflamed periodontal ligament inhibit proliferation of T cells significantly less 
than PDL-MSCs isolated from healthy donors. These effects are accompanied by lower generation of Treg and higher differentiation 
of Th17 cells, induced by PDL-MSCs [139]. 

Interesting results have been published after investigating AT-MSCs obtained from fat of obesity patients. Results have showed 
that AT-MSCs obtained from obesity and non-obesity donors possess similar phenotype, although AT-MSC derived from obesity 
patients have higher gene expression of inflammatory molecules such as IL-8, IL-1β, CCL2 [119,120]. How obesity patient-derived 
AT-MSCs affect immune response remains to be elucidated.

Immunomodulatory Properties of MSCs in Dental Tissues

The oral cavity is enriched by commensal bacteria that live in a mutually beneficial state with the host. In dental tissues, stem cells are 
homed toward infections, inflammation or tissue damage sites, where they come in contact with various bacteria. In inflammatory 
microenvironment, immune cells such as macrophages and neutrophils are attracted into dental tissue and periapical lesions. 
Today it is known that stem cells of dental tissue are actively engaged in the control of infections, through direct or indirect effects 
on host immune response [132,134]. Therefore, together with regenerative properties, immunomodulatory activity of dental tissue 
stem cells has strong impact on the maintenance of healthy dental tissue in physiological conditions as well as in diseases such as 
periodontitis [121,135].

Also, an inhibitory role of PDL-MSCs on B cell activation has been reported, where it has been observed that these MSCs 
regulate innate immune response through the expression of program cell death-1 (PDL-1) [140]. Similarly, G-MSCs show 
immunosuppressive effects through inhibition of T cell proliferation, mediated by IDO, IL-10, and cyclooxygenase-2 (COX-2) 
[135]. DFPCs also inhibit proliferation of peripheral blood mononuclear cells, due to increased expression of TGF-β, mediated 
by activation of inhibitory molecules TLR3 and TLR4 [141]. There are some indications in immunomodulatory activity of SCAPs 
[142], but mechanisms of their immunosuppressive properties are not clarified yet. 
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