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Abstract

The Lord-Shulman theory with one relaxation time and the dual-phase-lag model with two relaxation times of thermo-
elasticity are used in this article to study the influence rotation micro-elongated thermoelastic layer, when a piezo electric 
layer is above it. To convert a partial differential equation to an ordinary differential equation, the normal mode method 
is utilized. Numerical computations are implemented for aluminum epoxy, and the results are charted. A comparison is 
made among the two theories in the complete absence and the presence of a rotation. The presence of a rotation has a 
major effect on all physical quantities. 
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Nomenclature

 T 	 Absolute temperature

Ω 	 Angular velocity 

1tα , 
2tα 	  Coefficient of linear thermal expansion where

 10 (3 2 ) ,tβ λ µ α= +
 21 (3 2 ) tβ λ µ α= +

ijσ 	  Component of stress tensor for micro-elongated medium

ρ 	 Density in micro-elongated medium 
Pρ 	 Density in piezoelectric layer

u 	 Displacement vector in micro-elongated medium  
pu 	 Displacement vector in piezoelectric layer 

iE 	 Electric field in piezoelectric layer

qτ 	 Heat flux parameter

,λ µ 	 Lame's constants in micro-elongated medium 

0 0 1, ,a λ λ   Micro-elongational constants
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Introduction

Piezoelectric is the conversion of mechanical stress to electrical charge, and vice versa. Piezoelectric substances are produced indus-
trially in single-crystal and ceramic shapes, and they are the second most common application of dielectric materials, after semicon-
ductor materials (Othman et al. [1]). Based on observation distribution generated electric potential difference throughout the disk 
thickness, Ashida and Tauchert [2] proposed a finite-difference composition for assessing the time-varying, axisymmetric ambient 
temperature on the face of a piezoelectric circular disk. In the 2006 Haussuhl et al. [3] proposed Bismuth triborate (BiB3O6) is a 
nonlinear optical material with piezo-electric and elastic properties. Li and He [4] recently introduced the study of a general linear 
piezoelectric-thermoelastic problem with a nonlocal influence and temperature-dependent characteristics.

A micro-elongated elastic solid has four degrees of freedom, three of which are for translation and one for micro-elongation. Ac-
cording to micro-elongation theory, material particles can really only carry out volumetric micro elongation in addition to classi-
cal medium deformation. Such medium's material points can lengthen and contract independently of their translations. And also, 
micro-elongated media include solid liquid crystals, composite materials reinforced with chopped elastic fibers, and porous media 
with pores filled with non-viscous fluid or gas. In the context of generalized thermo-elastic theory, Shaw and Mukhopadhyay [5] 
examined the response due to periodically differing heat sources in vicinity of the origin of a functionally graded isotropic boundless 
micro-elongated medium in 2012. One year later, Shaw and Mukhopadhyay [6] again presented another study to investigate the 
implications of a moving heat source in an infinitely long micro-elongated, isotropic, homogeneous, thermoelastic medium. In 2015, 
Sachdeva and Ailawalia [7] presented research on two-dimensional deformation in a thermoelastic micro-elongated solid, when 
mechanical force applied along the user interface of fluid half-space and thermoelastic micro-elongated half-space. Also, in the same 
year, Ailawalia et al. [8] focused on to study the deformation caused by an internal heat source in a thermoelastic micro-elongated 
solid with an h-thick elastic layer on top. later, Ailawalia et al. [9] reintroduced the previous study in a different way, where he chang-
es the elastic layer from a bounded layer to an unbounded layer. Utilizing the normal mode analysis technique, Ailawalia et al. [10] 
developed a model for a thermoelastic micro elongated solid keep in mind the micro elongation effect and laser pulse heating. The 
eigenvalue approach was used to solve an axisymmetric problem of a micro-elongated thermoelastic medium with an infinite circu-
lar plate under the effect of thermo-mechanical sources has been discussed by Kumar et al. [11]. Ailawalia and Singla [12] studied 
two-dimensional deformation caused by laser pulse heating in a thermoelastic micro elongated layer with a thickness of 2d that is 
engrossed an infinite inviscid liquid.

ϕ 	 Micro-elongational scalar

0j 	 Microinertia

0T 	 Reference temperature 

ec 	 Specific heat at constant strain in micro-elongated medium
P
ec 	 Specific heat at constant strain in piezoelectric layer

θτ 	 Temperature gradient parameter

ij∈ 	 The dielectric moduli in piezoelectric layer

ijklC 	 The elastic parameters tensor in piezoelectric  

iD 	 The electric displacement in piezoelectric layer
pϕ 	 The electric potential in piezoelectric layer 

kije 	 The piezo electric moduli in piezoelectric layer

k 	 Thermal conductivity in micro-elongated medium
pk 	 Thermal conductivity in piezoelectric layer
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Ozisik and Tzou [13] and Tzou [14, 15] developed a new model for the heat transport mechanism named the dual-phase-lag model, 
in which Fourier's law is replaced by an approximation to the modification of Fourier's law with two different time translations for 
the heat flux and the temperature gradient. In the dual-phase-lag model, Othman and Abd-Elaziz [16] focused on investigation the 
influence of thermal loading caused by laser pulses on thermoelastic medium with voids. Abbas [17] published a research paper to 
examine the influence of dual-phase-lag on thermoelastic interplay in an infinite fiber-reinforced anisotropic medium with a circular 
hole. Reflection of plane waves from electro-magneto-thermoelastic half-space using a dual-phase-lag model has been discussed 
by Abd-Alla et al. [18]. Othman and Abd-Elaziz [19] utilized a dual-phase-lag model to investigate the effect of gravitational and 
rotation fields on the plane waves of a linearly magneto-micropolar thermoplastic isotropic medium. Based on the dual-phase-lag 
modification of Fourier's law, Othman and Eraki [20] studied the induced thermo-elastic diffusion waves in a homogeneous isotropic 
medium due to an ultra-short-pulsed laser heating that decomposed significantly. Abdou et al. [21] explained the effect of rotation 
and gravity on generalized thermoelastic medium with double porosity under L-S theory.

In the background of Green and Lindsay's linearized theory, Othman [22] provided the normal mode analysis to two-dimensional 
problems of general linear thermoelasticity with two relaxation times under the influence of rotation. Othman [23] proposed a gen-
eralized thermo-viscoelastic plane wave model for a half-space whose surface is subjected to a thermal shock under the influence of 
rotation with one relaxation time. Othman and Singh [24] discussed the influence of rotation on general linear micropolar thermo-
elasticity in a half-space according to five theories. Othman and song [25] studied the rotational effects on general linear electro-mag-
neto-thermo-viscoelasticity plane waves with two relaxation times. Later, Li et al. [26] proposed to investigate the rotational influenc-
es on plane waves of general linear electro-magneto-thermoelastic with diffusion in a half-space. Othman and Abbas [27] provided 
the multi-phase-lag theory in order to investigate the rotating on a 2-D analysis of the micropolar thermoelastic isotropic medium. 

The main objective of this paper is to examine the influence rotation micro-elongated thermoelastic layer under dual-phase-lag 
model, when piezo electric layer is above it. The precise expression of the variables examined for the dual-phase-lag model of ther-
mo-elasticity and the variation of the variables examined are depicted graphically using normal mode analysis.

Formulation of the Problem

The system of governing equations of a micro-elongated thermoelasticity with rotation, in a dual-phase-lag model (Fig. 1) can be 
written as [8, 12]

Figure 1:  Geometry of the problem
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, , ,[ { ( )} (2 ) ],ij j i tt i t iuσ ρ= + × × + ×u uΩ Ω Ω              	 (1)

0 , 1 1 0 , 0 ,
1 ,
2ii j j tta T u jϕ β λ ϕ λ ρ ϕ+ − − =               	 (2)

, 0 , 1 0 ,(1 ) (1 )( ) ,ii q e k kt t
Tk T c T u T

t t tθτ τ ρ β β ϕ∂ ∂ ∂
+ = + + +

∂ ∂ ∂
                    	 (3)

0 02 ( ) .ij ij ije Tσ µε λ β λ ϕ δ= + − +                               	 (4)

From equation (1) and equation (4) for displacement vector 1 3( , , ) ( ,0, )x z t u u u=u , and the rotation (0, ,0)Ω=Ω  the equations of 
motion are given by. 

2 2
1 , 0 , 0 , 1, 1 3,( ) ( 2 ),x x x tt tu e T u u uµ λ µ β λ ϕ ρ Ω Ω∇ + + − + = − +            	 (5)

2 2
3 , 0 , 0 , 3, 3 1,( ) ( 2 ).z z z tt tu e T u u uµ λ µ β λ ϕ ρ Ω Ω∇ + + − + = − +                	 (6)

For simplification we shall use the following non-dimensional variables

1
,i ix x

c
ω∗

′ =  
1

,z z
c
ω∗

′ =  1

0 0
,i i

cu u
T

ω ρ
β

∗

′ =  1

0 0
,e e

i i
cu u

T
ω ρ
β

∗
′ =  ,t tω∗′ =  ,θ θτ ω τ∗′ =  ,q qτ ω τ∗′ =  

0 0
,ij

ij T
σ

σ
β

′ =

 

0 0
,

e
ije

ij T
σ

σ
β

′ =  0 ,
0 0T

λ
ϕ ϕ

β
′ =  

0
,TT

T
′ =  ,ΩΩ

ω∗
′ =  1

1
0 0

,PP
Tβ

′=  
2
1 ,ec c
k

ρω∗ = 2
1

2 .c λ µ
ρ
+

= 	 (7)

The displacement potentials ( , , )x z tΦ  and ( , , )x z tψ  which relate to displacement components has been introduced, we obtain

1 , , ,x zu Φ ψ= +      3 , ,z xu Φ ψ= − .                                                       	 (8)

Substituting from Eqs. (7) and (8) into Eqs. (2), (3), (5) and (6), we obtain

2
2 2

1 2 ,2[ ( ) ] 2 0,ta a T
t

Ω Φ Ωψ ϕ∂
+ ∇ + − + − + =

∂
                    	 (9)

2
2 2

, 1 22 ( ) 0,t a
t

ΩΦ Ω ψ∂
− + ∇ + − =

∂
                                   	 (10)

2
2 2

5 3 4 6 2( ) 0,a a T a a
t

Φ ϕ∂
− ∇ + + ∇ − − =

∂
                                    	 (11)

2 2
8 , 7 , 9(1 ) (1 ) (1 ) 0.q t q ta T a T a

t t tθτ Φ τ τ ϕ∂ ∂ ∂
− + ∇ + + ∇ − + − =

∂ ∂ ∂
         	 (12)

The Normal Mode Analysis

The solution of the considered physical variable can be decomposed in terms of normal modes as the following form:

* * * * * * * * * ( )[ , , , , , , , , ]( , , ) [ , , , , , , , , ]( ) ,p p p p t i b x
i ij i ij i i ij i ij iu T u D x z t u T u D z e ωϕ ψ σ σ ϕ ψ σ σ +Φ = Φ 	 (13)

where, ω  is a complex constant, 1i = − , b  is wave number in the x direction.
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Using Eq. (13) into Eqs. (9)-(12), then we have 
2 * * * *

10 11( ) 2 0,a D a Tωψ ϕ+ Φ + Ω − + =                   	 (14)

* 2 *
1 122 ( ) 0,a D aω ψ− Ω Φ + + =                                    	 (15)   

2 * * 2 *
5 13 3 14( ) ( ) 0,a D a a T D a ϕ− + Φ + + − =                                        	 (16)

2 * 2 * *
17 18 16 19 9( ) ( ) 0.a D a a D a T a ωϕ− + Φ + − − =                      	 (17)

Eqs. (14-17) have a non-trivial solution if the determinant coefficients of the physical quantities equal to zero, then we get.

8 6 4 2 * * * *( ){ ( ), ( ), ( ), ( ) } 0.D AD B D C D E z z T z zψ ϕ− + − + Φ =                   	 (18)

Eq. (18) can be factorized as:

2 2 2 2 2 2 2 2 * * * *
1 2 3 4( )( )( )( ){ ( ), ( ), ( ), ( ) } 0.D k D k D k D k z z T z zψ ϕ− − − − Φ =    	 (19)

Where, 2,( 1,2,3,4)nk n =  are roots of the characteristic equation of Eq. (19) 

The general solutions of Eq. (19) bound as ( )z → ∞  is given by. 

4
* * * *

1 2 3
1

( , , , ) ( ) (1, , , ) .nk z
n n n n

n
T z H H H M eψ ϕ −

=
Φ = ∑           	 (20)       

       
Substituting from Eq. (20) into Eq. (8) we obtain the components of displacements.

4
*
1 1

1
( ) ( ) ,nk z

n n n
n

u z ib k H M e −

=
= −∑                                               	 (21)

4
*
3 1

1
( ) ( ) .nk z

n n n
n

u z k ibH M e −

=
= − +∑                                                	 (22)

Substituting from Eqs. (7) and (13) into (4) and with the help of Eqs. (20-22) we obtain the components of stresses.

4
* * *

4 5 6
1

( , , ) ( ) ( , , ) ,nk z
xx zz xz n n n n

n
z H H H M eσ σ σ −

=
= ∑                  	 (23)

where, the coefficient ia , , , ,A B C E and inH  are given in Appendix 1.

The system of governing equations of general piezoelectric are given by [28-30]

, , ,p p p
ij j i ttuσ ρ=                                                                             	 (24)

, 0,i iD =                                                                          	 (25)

, ,
1 ( ) ,
2

p p p
ij ijkl k l l k kij kC u u e Eσ = + −                                                  	 (26)

, ,
1 ( ) ,
2

p p
i ijk j k k j ij jD e u u E= + +∈                                                	 (27)

where, , .p
i iE ϕ=−
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For simplification, we shall use the following non-dimensional variables [4]

0 0 ,p px c xη′ =  0 0 ,p pz c zη′ =  0 0 ,p p
i iu c uη′ =  

2
0 0 ,p pt c tη′ =  

11
,

p
ijp

ij C
σ

σ ′ =  
33

,i
i

DD
e

′ =   11 0 0

33
,p pc

e
ηϕ ϕ′ ∈

=   2 11
0 ,p

cc
ρ

=  0 .
p p

e
p
c

k
ρη =              	 (28)

      

Substituting from Eqs. (28) and (13) into Eqs. (24) and (25)

2
1 1 1 2 3 3( D ) D D 0,p p pl A u i b l u i b l ϕ∗ ∗ ∗− + + =                                    	 (29)

* 2 2 2
2 1 5 2 3 7 6D ( D ) ( D ) 0,p p pi b l u l A u l b l ϕ∗ ∗+ − + − =                             	 (30)

2 2 2 2
8 1 9 3 10D (D ) ( D ) 0.p p pi b l u b l u l b ϕ∗ ∗ ∗+ − + − + =                              	 (31)

Eliminating * *
1 3, ,p p pu u ϕ ∗  between Eqs. (29), (30) and (31), we obtain

6 4 2
1 1(D D + D ){ ( ), ( ), ( )} 0.p p pG N F u z u z zϕ∗ ∗ ∗− − =                          	 (32)

Eq. (32) can be factorized as:

2 2 2 2 2 2
1 3 3 1 1(D )(D )(D ){ ( ), ( ), ( )} 0.p p pr r r u z u z zϕ∗ ∗ ∗− − − =                  	 (33)

Where, 2 ,( 1,2,3)mr m=  are roots of the characteristic equation of Eq. (33) the solutions of Eq. (33) are of the form:

3 3

1 3 1 2 1( 3) 2( 3) 3
1 1

( , , ) ( ) (1, , ) (1, , ) .m mr z r zp p p
m m m m m m

m m
u u z L L R e L L R eϕ −∗ ∗ ∗

+ + +
= =

= +∑ ∑    	 (34)

Substituting from Eqs. (28) and (13) into Eqs. (26) and (27) and with the help of Eq. (34), 

we obtain the components of stresses and the electric displacement in a piezoelectric 
layer

3 3

3 4 5 3( 3) 4( 3) 5( 3) ( 1)
1 1

( , , ) ( ) ( , , ) ( , , ) ,m nr z r zp p p
xx zz xz m m m m m m m m

m n
z L L L R e L L L R eσ σ σ −∗ ∗ ∗

+ + + +
= =

= +∑ ∑  	 (35)

 
3 3

6 7 6( 3) 7( 3) 3
1 1

( , ) ( ) ( , ) ( , ) .m mr z r z
x z m m m m m m

m m
D D z L L R e L L R e−∗ ∗

+ + +
= =

= +∑ ∑   						       (36)

The coefficient ,ml ′ 1,A 2 ,A , , ,G N F Hn n′  
and

 ( 3),m m m mL L′ ′ + , where 1,2,....,7m′=  and 1,2,.....,6n′=  are given in Appendix 2

The Boundary Condition 

The parameters Mn , (n = 1,2,3,4),  Rm and Rm+3 , (m = 1,2,3)  have to be selected such that boundary conditions at the surface are

,P
zz zzσ σ= ,P

xz xzσ σ= 1 1 ,Pu u=  3 3 ,Pu u= 0,ϕ =  0,T
z

∂
=

∂
0,xD =  0zD = 0.at z =            			    (37)
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( )
1 ,p t i b x

zz zz P e ωσ σ += −  0,xzσ =  at    .z h= −                                        	 (38)

Where, P1 is the magnitude of the mechanical force.

The utilization of the expressions of the variables considered into above boundary conditions (37), (38) to obtain the equations 
that are satisfied by the parameters. And hence, ten equations will be obtained. If the inverse method matrix is applied on the ten 
equations, we get then the value constant ,( 1,2,3,4),n mM n R=  and Rm+3, (m=1,2,3).

Numerical Results and Discussion

The analysis is conducted for aluminum epoxy-like material as [6]:

10 27.59 10 N m ,λ = ×  10
0 0.61 10 N,a −= ×  10

0 0.61 10 N,a −= ×  3 32.19 10 kg m ,ρ = ×  

966 J kg.k ,ec =  5 2
0 1 0,05 10 N m .k ,β β= = ×     252 J m.s.k,k =  4 2

0 0.196 10 m ,j −= ×

10 2
0 1 0.37 10 N m ,λ λ= = ×   0 293k,T =  0.002 s,θτ =    0.009s,   0 ,iω ω ζ= +      

4
0

16.428 10 ,sω − −=− × S–1   10.06657 ,sζ −=  S–1,      14 ,mb −= m–1,      0.001 .mh = m.
                                                               
The material chosen for piezoelectric is taken as Cadmium Selenide (CdSe) having hexagonal symmetry (6 mm class) [31]

10 2
11 7.41 10 N.m ,C −= ×  10 2

13 3.93 10 N.m ,C −= ×  2
33

108.36 10 N.m ,C −= ×  10 2
44 1.32 10 N.m ,C −= ×  35504kg.m ,ρ −=

2
31 0.160C.m ,e −= −  2

33 0.347C.m ,e −=  2
15 0.138C.m ,e −=−   260 J kg.k ,p

ec =  11 2 1 2
11 8.26 10 C .N .m ,− − −∈ = ×         

11 2 1 2
33 9.03 10 C .N .m .− − −∈ = ×

  

The computations are implemented for the value dimensionless time 0.021t s= s in the range 0 1.4z≤ ≤  on the surface 4m1.x = m 
to all physical quantities except the temperature T  and the micro-elongational scalar ϕ  is in a range 0 3z≤ ≤ . The numerical 
technique presented here is used to distribute the horizontal displacement 1,u  the vertical displacement 3,u  the temperature ,T  
the micro-elongational scalar ,ϕ  the stresses components ,xx zzσ σ  and xzσ with distance .z  To examine the effect of the presence 
and complete absence of rotation on the solution in the dual-phase-lag model and Lord-Shulman theory and the influence of the 

(39)
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Discussion

phase-lag temperature of gradient ,θτ  when the phase-lag of heat flux qτ  is constant on solution in just dual-phase-lag. This paper 
presents the numerical evaluation results in the form of charts. The results are depicted in Figs. 2-15 for the magnitude of mechanical 
force 1 N10 .P = N Figs. 2-8 exhibit the variation of the previous physical quantities with the distance z in the presence and absence of 
rotation (i.e., 10.91 , 0)sΩ Ω−= = S

–1,  10.91 , 0)sΩ Ω−= = for both the dual-phase-lag model and Lord-Shulman theory. Fig. 2 illustrates the distribution of 
horizontal displacement 1u  versus a distance .z  It obvious that the two curves based on the dual-phase-lag model start at the same 
point then decreasing up to disappear at 1.4,z ≥  moreover, there are on other two curves based on Lord-Shulman theory initiate 
from the same point which is different from the previous point and also decreasing up to disappear at 1.4.z ≥  Figs. 3 and 6 clarify 
the values of the vertical displacement and the force stress component always initiate from positive values and decrease in the range 
0 1.4,z≤ ≤   after that go to zero in the range 1.4.z ≥  It is also clear that the values of 3u  and xxσ  based on the dual-phase-lag 
model are large compared with the values of 3u  and xxσ  based on the Lord-Shulman theory. Figs. 4 and 5 depict the change in 
temperature T  and the micro-elongational scalar ϕ  with distance .z  In the presence of rotation (i.e. 10.91sΩ −=  S

–1) the values of T  
and ϕ  always start with increasing to a maximum value, then decrease and finally converge to zero. It is also seen that the values 
of T dependent on the dual-phase-lag model are small compared with the values of  T dependent on the L-S theory in the case of 
the presence of rotation in fig. 4, while occurs the opposite in fig. 5 on the same previous case. Figs. 7 and 8 exhibit the value of the 
forces stresses components zzσ  and xzσ always initiate from negative values and increase in the range 0 1.4,z≤ ≤  after that go to 
zero in the range 1.4.z ≥  It is evident that the values of zzσ and z dependent on the dual-phase-lag model initiate from the same 
point which is the same point in Figs. 7 and 8. Figs. 9-15 show the variation of the previous physical quantities with the distance z  
in the presence of rotation (i.e., 10.91sΩ −=  S

–1) for dual-phase-lag model at 59 10 ,q sτ −= ×
 
S, 5 510 , 2 10 ,θτ

− −= ×  53 .10 s−×  S
–1. Figs. 

9, 10 and 13 depict the variation of the horizontal displacement 1u  and the vertical displacement 3u  and the force stress component 

xxσ with distance .z  The values of the previous physical decrease up to vanished at distance 1.8.z ≥  It is also obvious that the 
influence of T is an increase in Fig. 9 whereas in figs. 10 and 13 is a decrease. Fig. 11 describes the change in the temperature T  
against distance .z  It is clear that the values of T increase when the effect of the phase-lag of temperature gradient θτ  increases. Fig. 
12 presents the change in the micro-elongational scalar ϕ  with distance .z  The three values of ϕ  initiate from zero then increasing 
to a maximum after that decrease even vanish. It is also evident that the values of ϕ  decrease when the influence of the phase-lag of 
temperature gradient θτ  increases. Figs. 14 and 15 exhibit the distribution of the forces stresses components zzσ and xzσ versus 
distance .z  All curves begin from the negative values then increase even go to zero. In Fig. 14 the values of zzσ  decrease when 
the phase-lag of temperature gradient θτ  decreasing, but in Fig. 15, the values of xzσ  increase when the phase-lag of temperature 
gradient θτ  decreases. e phase-lag of heat flux qτ  is constant on solution in just dual-phase-lag. This paper presents the numerical 
evaluation results in the form of charts. The results are depicted in Figs. 2-15 for the magnitude of mechanical force 1 N10 .P = N. Figs. 
2-8 exhibit the variation of the previous physical quantities with the distance z in the presence and absence of rotation (i.e., 10.91 , 0)sΩ Ω−= = 
S–1,  10.91 , 0)sΩ Ω−= =  for both the dual-phase-lag model and Lord-Shulman theory. Fig. 2 illustrates the distribution of horizontal displacement 

1u  versus a distance .z  It obvious that the two curves based on the dual-phase-lag model start at the same point then decreasing up 
to disappear at 1.4,z ≥  moreover, there are on other two curves based on Lord-Shulman theory initiate from the same point which 
is different from the previous point and also decreasing up to disappear at 1.4.z ≥  Figs. 3 and 6 clarify the values of the vertical 
displacement and the force stress component always initiate from positive values and decrease in the range 0 1.4,z≤ ≤   after that 
go to zero in the range 1.4.z ≥  It is also clear that the values of 3u  and xxσ  based on the dual-phase-lag model are large compared 
with the values of 3u  and xxσ  based on the Lord-Shulman theory. Figs. 4 and 5 depict the change in temperature T  and the micro-
elongational scalar ϕ  with distance  In the presence of rotation (i.e. 10.91sΩ −=  S

–1) the values of T  and ϕ  always start with increasing 
to a maximum value, then decrease and finally converge to zero. It is also seen that the values of T dependent on the dual-phase-lag 
model are small compared with the values of T dependent on the L-S theory in the case of the presence of rotation in fig. 4, while 
occurs the opposite in fig. 5 on the same previous case. Figs. 7 and 8 exhibit the value of the forces stresses components zzσ  and xzσ
always initiate from negative values and increase in the range 0 1.4,z≤ ≤  after that go to zero in the range 1.4.z ≥  It is evident that 
the values of zzσ and xzσ dependent on the dual-phase-lag model initiate from the same point which is the same point in Figs. 7 
and 8. Figs. 9-15 show the variation of the previous physical quantities with the distance z  in the presence of rotation (i.e., 10.91sΩ −=  
S–1) for dual-phase-lag model at 59 10 ,q sτ −= ×  

S, 5 510 , 2 10 ,θτ
− −= ×  53 .10 s−×  Figs. 9, 10 and 13 depict the variation of the horizontal 

displacement 1u  and the vertical displacement 3u  and the force stress component xxσ with distance .z  The values of the previous 
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physical decrease up to vanished at distance 1.8.z ≥  It is also obvious that the influence of θτ  is an increase in Fig. 9 whereas in figs. 
10 and 13 is a decrease. Fig. 11 describes the change in the temperature T  against distance .z  It is clear that the values of T  increase 
when the effect of the phase-lag of temperature gradient θτ  increases. Fig. 12 presents the change in the micro-elongational scalar 
ϕ  with distance .z  The three values of ϕ  initiate from zero then increasing to a maximum after that decrease even vanish. It is 
also evident that the values of ϕ  decrease when the influence of the phase-lag of temperature gradient θτ  increases. Figs. 14 and 15 
exhibit the distribution of the forces stresses components zzσ and xzσ versus distance .z  All curves begin from the negative values 
then increase even go to zero. In Fig. 14 the values of zzσ  decrease when the phase-lag of temperature gradient θτ  decreasing, but 
in Fig. 15, the values of xzσ  increase when the phase-lag of temperature gradient θτ  decreases.

Figure 2: Variation of the horizontal displacement 1u in the absence and presence of rotatio

Figure 3: Variation of the vertical displacement 3u in the absence and presence of rotation
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Figure 4: Variation of the temperature T  in the absence and presence of rotation

Figure 5: Variation of the micro-elongational scalar ϕ  in the absence and presence of rotation

Figure 6: Variation of the force stress component xxσ in the absence and presence of rotation.
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Figure 7: Variation of the force stress component zzσ in the absence and presence of rotation

Figure 8: Variation of the force stress component xzσ in the absence and presence of rotation

Figure 9: Variation of the horizontal displacement 1u with distance z in the presence of rotation.
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Figure 10: Variation of the vertical displacement 3u  with distance z in the presence of rotation

Figure 11: Variation of the temperature T  with distance z  in the presence of rotation.
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Figure 12: Variation of the micro-elongational scalar ϕ  with distance z in the presence of rotation.

Figure 13: Variation of the force stress component xxσ  with distance z in the presence of rotation

Figure 14: Variation of the force stress component zzσ  with distance z in the presence of rotation
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Figure 15: Variation of the force stress component Z with distance z  in the presence of rotation.

Conclusion

The method presented in this research applies to a wide range of thermodynamic problems. The current theoretical results may be 
of interest to experimental scientists' /researchers/ seismologists working in this subject. When the figures obtained under the two 
theories are compared, the following significant phenomena are observed:

1.	 The boundary conditions are satisfied by all physical quantities.

2.	 The physical quantities differ significantly between the DPL model and the L-S theory 

3.	 The influence of rotation plays a big role in all physical quantities.

4.	 Recent interest in micro-elongated materials arises from their potential applications in smarter engineering structures.

5.	 Micro-elongated is presently experiencing a surge in basic research as well as technical applications.

6.	 The study of thermodynamic systems of bodies in equilibrium whose interactions with their surroundings are restricted to 

mechanical work, heat exchange, and external work is the focus of thermoelasticity.
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