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An actual and intensively solving problems of solid state electronics is increasing of integration rate of elements of integrated 
circuits (p-n-junctions, their systems et al.) [1-8]. Increasing of the integration rate leads to necessity to de-crease their dimensions. 
To decrease the dimensions are using several approaches. They are widely using laser and mi-crowave types of annealing of infused 
dopants. These types of annealing are also widely using for annealing of radia-tion defects, generated during ion implantation [9-
17]. Using the approaches gives a possibility to increase integration rate of elements of integrated circuits through inhomogeneity of 
technological parameters due to generating inhomoge-nous distribution of temperature. In this situation one can obtain decreasing 
dimensions of elements of integrated cir-cuits [18] with account Arrhenius law [1,3]. Another approach to manufacture elements 
of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation [1-3]. However in this 
case optimiza-tion of dopant and/or radiation defects is required [18].

Introduction 

Abstract
In this paper we introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of 
integrated circuits with account nonlinearity of processes. The approach gives a possibility to analyze mass and heat transport in 
multilayer structures without crosslinking of solutions on interfaces between layers. The approach also gives a possibility to take into 
account spatial and temporal variation of parameters of considered processes. Based on this approach we analyzed manufacturing a 
current comparator to increase density of elements.
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Figure 1: The considered current comparator [4]
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Method of solution
In this section we determine spatio-temporal distributions of concentrations of infused and implanted dopants. To determine these 
distributions we calculate appropriate solutions of the second Fick's law [1,3,18]

.

The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС 
is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing materials of heterostructure, 
with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We 
approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results in Refs. 
[20-22]

Boundary and initial conditions for the equations are

,

Here the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) depend-ences 
of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of solubility of dopant. Parameter γε[1,3] describes 
average quantity of charged defects interacted with atom of dopant [20]. The function V (x,y,z,t) de-scribes the spatio-temporal 
distribution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of 
vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in details in [20]. It 
should be noted, that using diffusion type of doping did not generation radiation defects. In this situation ζ1= ζ2= 0. We determine 
spatio-temporal distributions of concentrations of radiation defects by solving the following system of equations [21,22]

In this paper we consider a heterostructure. The heterostructure consist of a substrate and several epitaxial layers. Some sections 
have been manufactured in the epitaxial layers. Further we consider doping of these sections by diffusion or ion implantation. 
The doping gives a possibility to manufacture field-effect transistors framework a cascaded-inverter circuit so as it is shown 
on Figure 1. The manufacturing gives a possibility to increase density of elements of the considered in [4] current comparator. 
After the considered doping dopant and/or radiation defects should be annealed. Framework the paper we analyzed dynamics of 
redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to decrease dimensions of the 
element. However it is necessary to complicate technological process.
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Boundary and initial conditions for these equations are

.

Here p =I,V. The function I (x,y,z,t) describes the spatio-temporal distribution of concentration of radiation intersti-tials; DP(x,y,z,T) 
are the diffusion coefficients of point radiation defects; terms V2(x,y,z,t) and I2(x,y,z,t) correspond to generation divacancies and 
diinterstitials; kI,V(x,y,z,T) is the parameter of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parameters 
of generation of simplest complexes of point radiation defects.

, P (x,y,z,0)=fp (x,y,z).

Further we determine distributions in space and time of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) by 
solving the following system of equations [21,22]

ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)

Boundary and initial conditions for these equations are

.
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Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are the 
parameters of decay of these complexes.
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We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated ap-proach [18]. 
The approach based on transformation of approximations of diffusion coefficients in the following form: Dρ(x,y,z,T)=D0ρ[1+ερ 
gρ(x,y,z,T)], where D0ρ are the average values of diffusion coefficients, 0≤ερ<1, |gρ(x, y,z,T)|≤1, ρ=I,V. We also used analogous 
transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: 
kI,V(x,y,z,T)=k0I,V[1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I [1+εI,I gI,I(x,y,z,T)] and kV,V(x,y,z,T)=k0V,V [1+εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 
are the their average values, 0≤εI,V <1, 0≤εI,I <1, 0≤εV,V<1, | gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)|≤1, |gV,V(x,y,z,T)|≤1. Let us introduce the 
following dimensionless variables: 

The introduction leads to transformation of Eqs.(4) and conditions (5) to the following form

,

χ = x/Lx, η = y /Ly, Φ = z/Lz. 

We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach [18], i.e. as the power series

Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for initial-order approximations 
of concentration of point defects  ( )000 , , ,I χ η ϕ ϑ  and ( )000 , , ,V χ η ϕ ϑ  and corrections for them ( ), , ,ijkI χ η ϕ ϑ   and  

( ), , ,ijkV χ η ϕ ϑ , i ≥1, j ≥1, k ≥1. The equations are presented in the Appendix. Solutions of the equations could be obtained by 
standard Fourier approach [24,25]. The solutions are presented in the Appendix.

Now we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine 
the distributions we transform approximations of diffusion coefficients in the following form: DΦρ(x,y,z,T)=D0 Φρ[1+ εΦρgΦρ(x,y,z,T)], 
where D0 Φρ are the average values of diffusion coefficients. In this situation the Eqs.(6) could be written as

(10)

(9)

(8)

Annex Publishers | www.annexpublishers.com                    

( ) ( ) *, , , , , ,I x y z t I x y z t I= ( ), , ,V x y z t = ( ) *, , , ,V x y z t V= 2
0 , 0 0 ,I V I VL k D Dω =

2
0 , 0 0 ,I VL k D Dρ ρ ρΩ = 2

0 0 ,I VD D t Lϑ =

( ) ( ) ( ) ( ){0

0 0

, , , , , ,
1 , , , 1 , , ,I

I I I I
I V

I ID g T g T
D D

χ η ϕ ϑ χ η ϕ ϑ
ε χ η ϕ ε χ η ϕ

ϑ χ χ η
 ∂ ∂∂ ∂ = + + + ×       ∂ ∂ ∂ ∂  

 

( ) ( ) ( ) ( )0 0

0 0 0 0

, , , , , ,
1 , , , , , ,I I

I I
I V I V

I ID D g T I
D D D D

χ η ϕ ϑ χ η ϕ ϑ
ε χ η ϕ χ η ϕ ϑ

η ϕ ϕ
  ∂ ∂∂  × + + − ×    ∂ ∂ ∂    

 



( ) ( ) ( ) ( )2
, , , ,1 , , , , , , 1 , , , , , ,I V I V I I I I Ig T V g T Iω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ χ η ϕ ϑ   × + −Ω +   

 

( ) ( ) ( ) ( ){0

0 0

, , , , , ,
1 , , , 1 , , ,V

V V V V
I V

DV V
g T g T

D D
χ η ϕ ϑ χ η ϕ ϑ

ε χ η ϕ ε χ η ϕ
ϑ χ χ η

 ∂ ∂∂ ∂ = + + + ×       ∂ ∂ ∂ ∂  

 

( ) ( ) ( ) ( )0 0

0 0 0 0

, , , , , ,
1 , , , , , ,V V

V V
I V I V

V VD D g T I
D D D D

χ η ϕ ϑ χ η ϕ ϑ
ε χ η ϕ χ η ϕ ϑ

η ϕ ϕ
  ∂ ∂∂  × + + − ×    ∂ ∂ ∂    

 



( ) ( ) ( ) ( )2
, , , ,1 , , , , , , 1 , , , , , ,I V I V V V V V Vg T V g T Vω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ χ η ϕ ϑ   × + −Ω +   

 

( )
0

, , ,
0,

χ

ρ χ η ϕ ϑ
χ

=

∂
=

∂

 ( )
1

, , ,
0,

χ

ρ χ η ϕ ϑ
χ

=

∂
=

∂

 ( )
0

, , ,
0,

η

ρ χ η ϕ ϑ
η

=

∂
=

∂

 ( )
1

, , ,
0,

η

ρ χ η ϕ ϑ
η

=

∂
=

∂



( )
0

, , ,
0,

ϕ

ρ χ η ϕ ϑ
ϕ

=

∂
=

∂

 ( )
1

, , ,
0,

ϕ

ρ χ η ϕ ϑ
ϕ

=

∂
=

∂



( ) ( )
*

, , ,
, , , .

fρ χ η ϕ ϑ
ρ χ η ϕ ϑ

ρ
=

( ) ( )
0 0 0

, , , , , , .i j k
ijk

i j k
ρ ρρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ

∞ ∞ ∞

= = =

= Ω∑ ∑ ∑ 



Annex Publishers | www.annexpublishers.com                    
 

Volume 9 | Issue 1

Journal of Materials Science & Nanotechnology
 
5

.

Now we calculate distribution of concentration of dopant in space and time by using the approach, which was used for analysis 
of radiation defects. To use the approach we consider following transformation of approximation of dopant diffusion coefficient: 
DL(x,y,z,T)=D0L[1+ εLgL(x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL< 1, |gL(x,y,z,T)|≤1. Farther we 
consider solution of Eq.(1) as the following series:

Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The using gives the pos-sibility to obtain 
equations for initial-order approximations of concentrations of complexes of defects Φρ0(x,y,z,t), cor-rections for them Φρi(x,y,z,t) 
(for them i ≥1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of 
the equations have been calculated by standard approaches [24,25] and pre-sented in the Appendix.

(11)

Farther we determine solutions of above equations as the following power series

We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically by using the second-
order approximations on all parameters, which have been used in appropriate series. Usually the second-order approximations 
are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been 
checked by numerical simulation.

In this section we analyzed calculated in previous section the spatio-temporal distributions of concentrations of do-pants. Figure 2 
shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces between layers of heterostructures. 
We calculate the above distributions of concentrations of dopants under the following condi-tion: value of dopant diffusion 
coefficient in doped area is larger, than values of dopant diffusion coefficient in nearest areas. In this situation one can find 
increasing of compactness of dopant in the heterostructure (Figure 2). At the same time one can find increasing of homogeneity 
of distribution of concentration of dopant (Figure 2). The first of the above effects gives a possibility to decrease dimensions of 
field-effect transistors and at the same time to increase their density. The second effect gives a possibility to decrease local overheats 
during functioning of these transistors or to decrease dimensions of the above transistors with fixed value of these overheats. 
Changing relation between values of dopant diffusion coefficients leads to opposite result (Figure 3).

Using the relation into Eq.(1) and conditions (2) leads to obtaining equations for the functions Cij(x,y,z,t) (i ≥1, j ≥1), boundary 
and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated by 
standard approaches (see, for example, [24,25]). The solutions are presented in the Appendix.
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It should be noted, that framework the considered approach one shall optimize annealing of dopant and/or radiation defects. 
Reason of the optimization is following. Increasing of annealing time leads to obtaining of too homogenous spatial distribution 
of concentration of dopant with decreasing of difference between doped and undoped areas of heterostructure. Decreasing 
of annealing time leads to obtaining of too homogenous spatial distribution of concentration of dopant with increasing local 
overheats during functioning of transistors. In this situation it is attracted an interest choosing of compromised value of annealing 
time. To estimate the compromised value of annealing time we used recently introduced criterion [26-33]. The choosing based on 
approximation real distribution by step-wise function Ψ (x,y,z) (Figure 4). Farther the required values of optimal annealing time 
have been calculated by mini-mization the following mean-squared error.

Figure 2a: Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direc-tion, which is perpendicular to 
interface between epitaxial layer substrate. Difference between values of dopant diffu-sion coefficient in layers of heterostructure increases with increasing 
of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate.

Figure 2b: Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to 
interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing 
of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 
1 corresponds to homogenous sample and annealing time Θ = 0.0048 (Lx

2+Ly
2+Lz

2)/D0. Curve 2 corresponds to homogenous sample and annealing time 
Θ = 0.0057 (Lx

2+Ly
2+Lz

2)/D0. Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx
2+Ly

2+Lz
2)/D0 and Θ = 0.0057 

(Lx
2+Ly

2+Lz
2)/D0, respectively
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Figure 3a: Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figure 1 in direction parallel to 
interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of 
number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant diffusion coefficient in nearest sections.

Figure 3b: Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are 
spatial distributions of implanted dopant in system of two epitaxial layers. Dushed lines are spatial distributions 
of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves

( ) ( )
0 0 0

1 , , , , , .
yx zLL L

x y z

U C x y z x y z d z d y d x
L L L

ψ= Θ −  ∫ ∫ ∫

We show optimal values of annealing time as functions of parameters on Figure 5. It is known, that standard step of manufactured 
ion-doped structures is annealing of radiation defects. In the ideal case after finishing the annealing dopant achieves interface 
between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicably to anneal the 
dopant additionally. The Figure 5b shows the described dependences of optimal values of additional annealing time for the same 
parameters as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of implanted dopant 
in comparison with optimal annealing time of infused dopant. Curves 1 on Figure 5 describe dependences of the annealing time 
on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. 
These dependences could be qualitatively explained by increasing of thickness of epitaxial layer. The increasing leads to increasing 

(13)
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of time of achievement of interface between layers of heterostructure. Curves 2 describe the dependence of the annealing time 
on value of parameter ε for a/L=1/2 and ξ = γ = 0. Increasing of parameter ε leads to increasing of difference between values 
of dopant diffusion coefficient in doped and undoped areas. The increasing leads to decreasing of speed of dopant diffusion in 
undoped area with increasing of of optimal value of annealing time. Curves 3 describes the dependence of the annealing time 
on value of parameter ξ for a/L=1/2 and ε = γ = 0. Increasing of value of parameter ξ leads to increasing of the second term of 
approximation of dopant diffusion coefficient. The increasing leads to increasing of dopant diffusion coefficient and increasing of 
speed of dopant. The increasing of speed of dopant leads to decreasing of value of compromise value of annealing time. Curves 4 
describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0. Increasing of value of parameter 
 leads to increasing of the second term of approximation of dopant diffusion coefficient. The increasing leads to increasing of 
dopant diffusion coefficient and increasing of speed of dopant. The increasing of speed of dopant leads to decreasing of value of 
compromise value of annealing time.

Figure 4a: Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different val-ues of annealing time (curves 2-4) and 
idealized step-wise approximation (curve 1). Increasing of number of curve cor-responds to increasing of annealing time

Figure 4b: Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2-4) and 
idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time
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In this paper we introduce an approach to increase integration rate of element of a current comparator. The ap-proach gives us 
possibility to decrease area of the elements with smaller increasing of the element’s thickness.

Figure 5a: Dimensionless optimal annealing time of infused dopant as a function of several parameters

Figure 5b: Dimensionless optimal annealing time of implanted dopant as a function of several parameters

Conclusions
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