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Abstract

Introduction

Anodic aluminum oxide doped with vanadyl citrate chelate complex anions was formed by a two-step self-organized anodization in 2 
wt. % sulfuric acid containing 0.04 M V2O5 and 0.08 M citric acid at voltage range 13-23 V, and at 0 and 15 oC. The combination of two 
temperatures and at least four voltages (depending on the applied temperature) was applied as the operating conditions of anodization. 
It was found that formed nanoporous alumina was doped with vanadium (up to 0.08 at. %). The analysis of the photoluminescence 
of the grown oxide exhibits separate bands for the incorporated vanadyl citrate chelate anions (emission maxima at λ = 270 nm) and 
F – centers (emission maxima at λ = 455 nm). Moreover, due to the complex electronic structure of the incorporated anions, relatively 
long fluorescence decays were achieved (up to 44.6 ns). Despite incorporation of relatively large anions, pore diameter and interpore 
distance were still linear functions of the voltage. Conducted research allowed to understand the fundamental aspects of the anions 
incorporation in the anodic alumina and allowed to form a new type of luminescent material.

Anodization of aluminum allows to form self-organized, hexagonally-arranged, nanoporous anodic aluminum oxide (AAO). 
AAO attracts researchers attention due to the unlimited applications in numerous disciplines, including: nanofabrication [1-4], 
sensor assembly [1,5-6], high contact angle functional surface engineering [1,7-9], photonic crystals manufacturing [10-11], or-
ganic photovoltaics [12-13], and biomaterials fabrication [1,14-16].
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Typically, highly-ordered AAO is fabricated in three major electrolytes: sulfuric [17-22], oxalic [17-18,23] and phosphoric acid 
[8,17,18,24,25]. So formed AAO is very often subjected to post processing to add some functional properties to the nanoporous 
oxide. Here one can distinguish ex-situ post-fabrication molecules loading into the AAO pores by simple impregnation [26], 
electrophoretical deposition of polymer nanoparticles [27], magnetic field assisted deposition of nanoparticles [28]. On the other 
hand, Thorat et al. reported various in-situ post-fabrication techniques of anodic alumina filling with silver nanoparticles [29]. All 
the mentioned above techniques are dedicated to already formed nanoporous alumina, and only the surface of inner pore walls 
can be functionalized. In the approach presented in the paper, the AAO is being functionalized during its growth – the in-situ 
real-time approach is presented and described. During anodic oxide growth, anions are being attracted by the anode, including the 
grown anodic oxide. Then, the attracted anions are being adsorbed on the anodic oxide surface and the gradually growing oxide is 
embedding them. As a result, electrolyte’s anions are incorporated into the AAO, as demonstrated for instance by detailed study of 
Le Coz et al. reporting high resolution elemental mapping of AAO [24]. Moreover, a wide range of photoluminescence (PL) stud-
ies reveals that AAO has strong photoluminescence bands originating from incorporated electrolyte’s anions and F-centers [30-
35]. Additionally, the fluorescence decay allows to distinguish bands originating from typical F-centers and those originating from 
the incorporated anions. For example, in studies reported by Li et al. [32] the F-centers fluorescence decay was shorter than 7 ns 
and the fluorescence decay originating from the anions was much longer, up to 46 ns. Recently Shin et al. reported incorporation 
of RuO4

2- anions into anodic titania during anodization, for catalytic purposes [36]. If the incorporation of typical anions occurs 
in anodic oxides, incorporation of more complex chemical individuals like chelate complexes should be also possible.
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Results and discussion 

At first, series of V2O5 solutions were prepared in 2 wt. % H2SO4 with and without addition of citric acid. Spectra of V2O5 in H2SO4 
and V2O5 in H2SO4 with citric acid were taken with UV–Vis Cary spectrophotometer (Varian Company) at wavelength range from 
250 to 1000 nm. Solution with citric acid left overnight turned blue what confirmed appearance of VO2+ cations chelated by citrate 
anions (electronic transition between orbitals in accordance to the ligand field theory).

Materials and Methods

Figure 1a shows absorption spectra of 0.04 M V2O5 dissolved in 2 wt. % H2SO4 with and without addition of 0.08 M citric acid. For 
solution with citric acid a distinct maximum is seen, which, according to Gryboś et al. [39] should be attributed to the electronic 
transitions between d-orbitals of VO2+ chelated ions (from 713 to 833 nm there are bands attributed to the dxy → dyz,dxz transitions). 
Additionally, according to the paper of Niklova and Niklov [40], at low pH, depending on the ligand to central cation ratio, citrate 
vanadyl complexes have absorption maxima at the wavelength range from 550 to 830 nm. In this work, the absorption maximum 
of the vanadyl citrate chelate complex is at λ = 770 nm, which is in line with the results cited above. At low wavelength region, 
there was extremely intensive absorption maximum at the 200 nm, attributed to the electronic transitions between the bonding 
and anti-bonding π orbitals (Figure 1b; recorded for diluted solution). It confirms that [VO(H2O)2(cit)]- chelate complex was 
formed. To incorporate desired elements into anodic aluminum oxide, they have to be in a form of anion, to be attracted by the 
anode. Therefore, stable chelate complex enables anodic alumina doping with VO2+ cations chelated by citrates. Nevertheless, one 
has to be aware that in sulfuric acid solution the citrates may protonate and various interconversions may be also take place [41]. 
Moreover, citrates have also one major advantage as an electrolyte modifier applied in anodization – they prevent anode from 
current-assisted dissolution for anodizing at low voltages [42]. Therefore, anodization at 13 V was enabled.

In this paper incorporation of vanadyl citrate chelate complex into AAO is accomplished. The presence of vanadyl chelate com-
plexes is confirmed by chemical composition analysis and photoluminescence studies.

A high purity Al foil purchased from Alfa Aesar (99.9995% Puratronic) was cut into coupons (1 cm per 2.5 cm), degreased in 
acetone and ethanol and electropolished (Pt grid as a cathode, mixture of 4:1 ethanol: 60% HClO4 by volume, 10 oC, 0.5 A/cm2, 60 
s). Anodizations were carried out in 0.04 M V2O5 with 0.08 citric acid in 2 wt. % H2SO4 in the voltage range from 13 to 23 V with 
step of 2 V at 0 and 15 oC. After the first, 20 h long anodization, the poorly arranged oxide was removed by chemical etching in a 
mixture of stirred 6 wt. % H3PO4 and 1.8 wt. % H2CrO4 at 60 oC for 90 min. After oxide removal, the re-anodization was conducted 
at the same set of experimental conditions like the first step.

Characterization of the anodic oxide was done with a high-resolution field emission scanning electron microscope (FE-SEM) 
Quanta 3D FEG (FEI, USA). Geometrical features like pore diameter and interpore distance were evaluated from three independ-
ent FE-SEM micrographs and the image analysis were performed with NIS-Elements and WSxM software [37,38]. The thickness 
of AAO were evaluated from cross sections.

Chemical composition of the anodic aluminum oxide was measured by use of the FE-SEM equipped with X-ray energy dispersive 
spectroscope (EDS) at voltage of 20 kV. The EDS analyses were performed for cross sections of AAO, to avoid any systematic errors 
from unoxidized aluminum beneath the porous oxide layer.

The PL spectra were taken with FL 900 spectrofluorimeter (Edinburgh Instruments) with Xe lamp, using front-surface measure-
ment mode. The excitation spectra were taken from 245 to 400 nm and emission spectra from 260 to 550 nm what allowed to 
evaluate photoluminescence excitation-emission maps.

Fluorescence decays (FD) of the samples were measured with stroboscopic technique with the use of EasyLife LS system PTI. Two 
impulse diode modules generating 280 and 340 nm were employed for sample excitation. Wide characteristics of the diodes were 
corrected with filters (Semrock) FF-280/20 and FF-340/26, respectively. Long-pass filters, cutting-off excitation band, on emis-
sion path were used: FF-300LP and LP-355 for 280 and 340 nm excitation, respectively. FD characteristics were collected at room 
temperature using 10 averages. The pieces of the solid samples were fixed with holder with the use of quartz SuprasilTM window. 
The holder allowed fluorescence signal collection from the surface. Instrument Response Function (IRF) was recorded using blank 
aluminum sample. The procedure was conducted separately for 280 and 340 nm excitation sources. In both cases corresponding 
excitation filters were placed in optical paths. Deconvolution of IRF and sample signals was performed with the use of FELIX32 
program. Two or three lifetime component model was chosen depending on the best fitting regarding χ2 parameter.

After two-step, self-organized anodization performed in 2 wt. % H2SO4 containing 0.04 M V2O5 and 0.08 M citric acid, nanoporo-
us oxide was formed, with quite uniform pores and satisfying arrangement at all different anodization voltages considered (13, 15 
and 17 V for Figure 2a, b and c, respectively). The oxide contained vanadium, up to 0.08 at. % (Table 1). The presence of vanadium 
in the form of chelate complex was aconfirmed by the recorded photoluminescence maps (Figure 2 d-f). The relevant quantitative 
information concerning AAO geometry and amount of incorporated vanadyl has been summarized in Tables 1 and 3, respectively. 



Annex Publishers | www.annexpublishers.com                    
 

Volume 1 | Issue 1

Journal of Materials Science & Nanotechnology
 
3

Detailed PL analysis, performed for excitation wavelength of 220, 280, 340 and 380 nm, shows emission intensity maxima for most 
of the samples at about 455 nm (Figure 3). However, for the lowest excitation wavelength there are intensive bands with maxima 
at about 270 nm (Figure 3a), which have not been reported for AAO in the literature yet. Hence, these can be attributed to the 
incorporated vanadyl citrate chelate anions. Typical F-centers PL emission wavelengths are in the range of 440 - 500 nm [30-35], as 
well as the emission wavelengths of incorporated sulfate anions [32]. In general, at each anodization voltage, the greatest emission 
intensities were recorded for AAO formed at 15 oC (Figure 3). However obtained chemical composition analysis of the formed 
oxide, due to the detection threshold and small amount of incorporated chelate complex anions, does not give clear foundations for 
any statement about correlation between the photoluminescence and the operating conditions of the anodization process. One can 
also notice that for AAO formed at 15 oC at 19 V the PL intensity is the lowest one. However, for this operating conditions, anodic 
dissolution was dominating in several zones and the AAO was dissolved there, what affected the PL intensity.

For the lowest excitation wavelengths, starting from 245 nm, emission band with low intensity are seen on the maps, especially 
for AAO formed at 17 V (Figure 2 f). These can be attributed to the incorporated vanadyl citrate chelate complexes, namely to 
the excitation of electrons from bonding to anti-bonding π orbitals (compare to Figure 1b). It is clearly seen in the maps that in 
the excitation wavelengths 325 – 400 nm range strong emission occurs in the 380 – 520 nm range what can be attributed to the F 
centers of the anodic aluminum oxide.

Figure 1: Absorption spectra of 0.04 M V2O5 in 2 wt. % H2SO4 and 0.04 M V2O5 with 0.08 citric acid in 2 wt. % H2SO4 (a) and for 2.10-4 M 
V2O5 with 4.10-4  citric acid in 2 wt. % H2SO4 

Figure 2: FE-SEM micrographs (a-c) and PL excitation-emission maps (d-f) of AAO formed in 2 wt. % H2SO4 with addition of  0.04 M 
V2O5 and 0.08 citric acid at 15 oC at 13 (a, d), 15 (b, e) and 17 V (c, f). The hotter color the greater PL intensity (d-f).
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Table 1: Percentage content of vanadium in AAO formed in 2 wt. % H2SO4 with chelate vanadyl complex additives with fabrication conditions and 
oxide thickness.

Table 2:  Fluorescence decay after deconvolution into three peaks of AAO formed in 2 wt. % H2SO4 with chelate vanadyl complex additives 
with fabrication conditions. The samples were excited with radiation wavelength of  λ= 280 nm and 340 nm.

Average Current Density [mA/cm2]Oxide layer thickness [μm]Vanadium content [at. %]Voltage [V]Temperature [oC]

0.1 ± 0.16.1 ± 0.10.04 ± 0.0213

0

0.5 ± 0.47.5 ± 0.20.05 ± 0.0115

0.7 ± 0.19.9 ± 0.20.04 ± 0.0117

1.8 ± 0.713.2 ± 0.10.04 ± 0.0119

1.8 ± 0.513.0 ± 0.30.06 ± 0.0121

0.8 ± 0.417.0 ± 0.30.08 ± 0.0223

0.7 ± 0.115.6 ± 1.20.05 ± 0.0213

15
1.0 ± 0.118.0 ± 0.50.05 ± 0.0115

1.6 ± 0.323.5 ± 0.70.05 ± 0.0217

2.3 ± 1.023.4 ± 0.30.03 ± 0.0119

Excitation wavelength λexc = 340 nmExcitation wavelength λexc = 280 nm
Voltage [V]Temperature [oC]

AttributionPercentage 
share [%]

Lifetime 
[ns]AttributionPercentage share 

[%]Lifetime [ns]

                                         A
ll the fluorescence w

as originating from
 F-centers

82.9 ± 5.1
11.0 ± 3.4
6.2 ± 2.3

0.8 ± 0.1
2.6 ± 0.7
5.6 ± 0.6

No fluorescence decay analysis could be performed for 
AAO formed at this set of operating conditions13

0

88.1 ± 5.5
11.9 ± 0.4

1.0 ± 0.0
4.6 ± 0.1

F-centers
F-centers

Incorporated chelate anions

73.2 ± 4.2
26.1 ± 1.0
0.8 ± 0.0

0.7 ± 0.1
3.2 ± 0.1

38.9 ± 3.815

90.8 ± 5.7
9.2 ± 0.3

0.9 ± 0.0
4.6 ± 0.1

F-centers
F-centers

Incorporated chelate anions

43.6 ± 4.6
55.1 ± 1.5
1.2 ± 0.0

0.7 ± 0.1
2.7 ± 0.0

44.6 ± 1.017

85.9 ± 4.2
14.1 ± 0.5

1.1 ± 0.0
4.7 ± 0.1

F-centers
F-centers

Incorporated chelate anions

75.83 ± 3.5
23.42 ± 1.6
0.75 ± 0.0

0.9 ± 0.0
3.3 ± 0.1

35.2 ± 5.219

86.0 ± 5.2
14.0 ± 0.5

1.1 ± 0.0
4.7 ± 0.1

F-centers
F-centers

Incorporated chelate anions

84.3 ± 5.7
14.9 ± 0.4
0.9 ± 0.0

0.5 ± 0.0
3.4 ± 0.1

33.5 ± 1.021

91.0 ± 6.0
9.0 ± 0.3

1.0 ± 0.0
5.2 ± 0.1

F-centers
F-centers

Incorporated chelate anions

81.3 ± 6.4
18.0 ± 0.8
0.7 ± 0.0

0.5 ± 0.1
3.1 ± 0.1

41.7 ± 3.823

83.8 ± 4.3
16.2 ± 0.4

1.2 ± 0.0
5.0 ± 0.1

F-centers
F-centers

Incorporated chelate anions

40.4 ± 6.0
58.2 ± 1.2
1.4 ± 0.0

0.6 ± 0.1
2.7 ± 0.0

43.8 ± 0.513

15

86.4 ± 5.2
13.6 ± 0.6

1.1 ± 0.1
4.6 ± 0.1

F-centers
F-centers

Incorporated chelate anions

80.6 ± 4.6
19.0 ± 0.1
0.4 ± 0.0

0.7 ± 0.0
3.3 ± 0.1

25.2 ± 1.915

83.5 ± 5.4
16.5 ± 0.6

1.1 ± 0.1
4.6 ± 0.1

F-centers
F-centers

Incorporated chelate anions

77.5 ± 4.1
21.2 ± 0.1
1.3 ± 0.1

0.7 ± 0.0
3.4 ± 0.1

16.3 ± 0.817

No fluorescence decay analysis could be performed for AAO formed at this set of operating conditions19
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Temperature [oC] Voltage [V] Pore diameter [nm] Interpore distance 
[nm]

Porosity [%] Pores density 
[μm-2]

0

13 21 ± 5 41 ± 1 24 ± 11 406 ± 32

15 22 ± 3 43 ± 1 24 ± 7 413 ± 54

17 23 ± 3 47 ± 1 22 ± 7 394 ± 6

19 25 ± 5 53 ± 1 20 ± 9 307 ± 8

21 27 ± 7 58 ± 5 20 ± 13 277 ± 10

23 28 ± 6 62 ± 3 18 ± 9 259 ± 13

15

13 26 ± 4 39 ± 0 40 ± 11 476 ± 69

15 26 ± 3 44 ± 0 32 ± 8 437 ± 8

17 30 ± 4 50 ± 1 32 ± 9 294 ± 19

19 31 ± 7 52 ± 1 31 ± 15 299 ± 19

Equations of the fitting curves

Temperature 0 oC Temperature 15 oC

Pore diameter Dp = 0.71U + 11.67 Dp = 0.89U + 13.79

Intepore distance Dc = 2.21U + 10.83 Dc = 2.25U + 10.29

Table 3:  Geometrical features of formed AAO with operating conditions.

Therefore, the longest fluorescence decays can be surely attributed to the incorporated vanadyl chelate complex anions and the 
two shorter ones – to the F-centers. However, the share of the relatively long fluorescence decays was just about 1% what is caused 
by low content of vanadyl citrate chelate complexes (Table 1) and excitation wavelength (compare Figure 2a to Figure 2b). Never-
theless, fluorescence decays, longer than 7 ns were recorder for all the samples, what confirms the presence of relatively complex 
structures present in the AAO, excited with λexc = 280 nm. Analysis of fluorescence decays for AAO excited with λexc = 360 nm 
shows any fluorescence decays longer than 7 ns (Table 2). Therefore, all the emission bands in the range of 380 – 520 nm can be 
attributed to the F – centers.

To confirm the origin of PL bands, a fluorescence decay of AAO was investigated in details. Typically, the F-centers fluorescence 
decay is shorter than 7 ns and for other individuals, like incorporated anions, the decay time is longer, due to the complexity of 
phenomena of energy transfers between the bands of more sophisticated structures [32]. In all the cases, while the samples were 
excited with λexc = 280 nm, the fluorescence decay was described by three main components: two shorter than 7 ns and one much 
longer than 7 ns, reaching even up to approximately 45 ns (Table 2).

Incorporation of relatively large chelate anions has not affected strongly the AAO itself. One can see quite regular pores (Figure 
2) which geometrical features like pore diameter and interpore distance are still controlled by the voltage (Table 3). Pore diameter 
increase with the temperature is noticed (Table 3). Thus, a geometry-controllable AAO template with luminescent properties owed 
to the incorporated anions was formed. A phenomenological explanation of the observed effects can be given, based on a recent 
theoretical formulation of the AAO growth mechanism [43]. Despite local pH and viscosity fluctuations [43], the anode attracts 
various anions like O2- and OH-, as well as the electrolyte’s anions: SO4

2- (Figure 4).

Figure 3:  PL spectra of AAO formed in 2 wt. % H2SO4 with addition of 0.04 M V2O5 and 0.08 citric acid. AAO was excited with various radiation wave-
lengths: 220 (a), 280 (b), 340 (c) and 380 (d).
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