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Abstract

Introduction

Anodisation of pure titanium has been carried out in sulphuric and in phosphoric acid solutions at potentials ranging from 50 to 150V. 
The SEM and AFM morphological analysis indicates that, within this potential range, oxidation in sulphuric acid solution produces 
better developed mesoporous oxide layers. XPS analysis of the Ti2p core level region and Raman spectroscopy measurements show 
that oxide layers grown in sulphuric acid are characterised by a better defined oxidation state of titanium and by a higher content 
in anatase crystalline phase. XPS measurements indicate that oxidation in phosphoric acid solution produces oxide layers with two 
components of stoichiometric oxide and with the presence of phosphate inclusions which can be interesting in view of biomedical 
applications.

Titanium  and  its  alloys  are  largely  employed  for  the  development  of  orthopaedic  and  dental implants because of their 
good mechanical strength and low density. Thanks to its thin native oxide layer which prevents ion release, titanium offers good 
resistance to corrosion in body fluids and good biocompatibility. These properties can be further improved by surface treatments 
able to grow thicker  oxide  layers  with  controlled  morphological  and  physico-chemical  properties.  Several methods have 
been used to this purpose, from thermal treatment [1-3], to acid solution immersion [4], peroxide immersion [5], anodic-plasma 
chemical treatment [6], plasma immersion ion implantation [7] and anodisation [8,9].
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Experimental
Titanium foil (purity 99.7%), 1 mm in thickness, was purchased from Mateck GmbH (Germany) and cut in 10 mm x 10 mm 
specimens. Prior to anodisation samples were mechanically polished with SiC abrasive paper  (from P800 to P4000 grade). After 
polishing samples were sonicated in acetone, ethanol and Milli-Q water, successively, and dried in a nitrogen stream.

In recent years anodisation has been widely used to grow oxide layers on titanium [10]. Different morphologies,  crystalline  phases  
and  selective  enrichment  with  chemical  species  have  been obtained by tuning anodising conditions and post anodisation 
treatments [11]. In particular anodisation in fluoride ion containing electrolytes results in the formation of nanotubular TiO2 
layers [12,13] while nanoporous oxide layers can be grown in acidic electrolytes in the absence of fluoride compounds [14,15]. 
Depending on the anodising protocols, the formation of amorphous and/or crystalline oxide layers has been reported as well as the  
annealing induced inter-phase conversion [16,17]. In view of biomedical applications, to enhance the osseintegration properties of 
the oxide layer, different strategies have been explored, including coating with  hydroxyapatite [18] or anodisation in Ca or P 
containing electrolytes to obtain enriched bioactive surfaces [6].

In the present study we investigated the anodisation of titanium in sulphuric and phosphoric acid solutions at different anodising 
potentials with the aim of correlating the oxide morphological and structural properties with the anodisation conditions. This 
work is part of an ongoing project focussed on the growth and functionalization of titanium oxide layers aimed to develop TiO2 
surfaces with improved antibacterial properties.
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Polished samples were anodised in a two-electrode cell, using a Pt grid as a counter-electrode. Anodisation was performed in 1M 
H2SO4 and 1.5 M H3PO4 for 1 min at voltages of  50 V, 70 V, 100 V, 120 V and 150 V. The electrolytes were prepared from 98% H2SO4  
(p.a. Fluka) and 85% H3PO4 (p.a. Merck), respectively. Oxidized samples were thoroughly rinsed with Milli-Q water and dried. In 
order to investigate possible structural changes of the anodic oxides with annealing, some anodised samples were annealed in air 
at 600 °C for 1 hour.

The morphology of oxidised samples was investigated by scanning electron microscopy (SEM) and tapping mode atomic force 
microscopy (AFM). SEM measurements were performed using a LEO1450VP SEM with tungsten filament. The images were 
obtained with the signal of secondary electrons. The analysis was carried out in high vacuum conditions, without any metallization 
of the sample. SEM images were analysed using ImageJ software. The equivalent pore diameter was calculated as the average 
between the pore widths measured along the maximum and minimum pore axes. In the histograms, the number of bins was set to 
the integer closest to √ N  . Tapping mode AFM  measurements  were  performed  using  a  Dimension  3100/Nanoscope  III  system  
(Digital Instruments-Bruker) and Si cantilevers (OMCLAC160TS, Olympus).

The chemical analysis of the sample surfaces has been carried out by XPS measurements using a 5600  MultiTechnique  apparatus  
operated  as  reported  in  a  previous  study [19].  An  X-ray  Al- monochromatised source (hν = 1486.6 eV) was used. The binding 
energy scale was referenced by setting the C1s of adventitious carbon at 284.8 eV.

Micro Raman analyses were carried out with a Renishaw System 2000 spectrometer equipped with a Peltier cooled CCD detector 
and coupled with a Leica optical microscope. The red line at 632.8 nm of a He–Ne laser was used as the excitation source, with laser 
power kept as low as possible to avoid thermal heating of the sample. 

Results and Discussions
SEM and AFM analysis was carried out to investigate the surface morphology of anodised samples as a function of the applied 
voltage for oxide layers grown in sulphuric and in phosphoric acid electrolytes.
The  overall  analysis  of  the  surface  morphology  of  samples  oxidized  in  H2SO4   indicates  the formation of a mesoporous oxide 
layer. Two representative SEM images of samples oxidized at 100V and 150V are shown in Figure 1a and 1c.  At 100 V, isolated 
pores are formed. Most of them are roundly shaped and, for some pores, a sort of pore wall can be distinguished around the 
cavity (better observed in AFM images, see Figure 2). Figure 1e shows the histogram of the equivalent pore diameters. A Gaussian 
function was fitted to the histogram by using central value and σ as fitting parameters. The distribution central value and σ turn 
out to be (71±3) nm and (46±7) nm, respectively. Increasing the anodisation potential up to 150V results in the formation of larger 
pores (Figure 1c). Some of them have an elongated shape and a multi-pore structure and are likely the result of a coalescence 
process; as a consequence, the density of pores on the surface decreases. The histogram of the equivalent pore diameters is shown in 
Figure 1f. Again a Gaussian function was fitted to the histogram. The distribution central value and σ result to be (254±9) nm and 
(79±16) nm, respectively. The changes in pore size and morphology observed by SEM are confirmed by AFM analysis which allows 
to investigate in more detail the surface morphology and to quantify the vertical excursions of the surface topography. Figure 2 a, c, 
e shows a series of AFM images acquired on samples oxidized in H2SO4 at increasing voltages: 100 V, 120 V and 150V. Anodisation 
at 100V  produces  oxide  layers  characterized  by  individual  pores  with  clearly  distinguishable  wall boundaries. Very similar 
pore morphologies are observed on samples anodised at 70V (data not shown). The apparent depth of the pores measured with 
respect to the wall is of the order of 150-200 nm. It must be noted that the hole depth values measured on AFM images represent 
a lower limit of  the real  hole depth because of the convolution effect due to the finite size of the AFM tip. When the anodisation 
potential is increased, single pore boundaries are no more easily distinguishable and on samples oxidised at 150V pores seem to be 
formed on an almost continuous ground layer. The maximum apparent hole depths measured on samples prepared at 150 V are in 
the range 500-600 nm, consistently with the fact that a  minor depth underestimation is expected for larger pores.

The oxide layers formed upon anodisation in H3PO4 are less homogeneous compared to those grown in H2SO4 solutions. The 
combined SEM/AFM analysis shows that regions with well-defined pores alternate with regions with not completely formed pores. 
Two representative SEM images of samples oxidized in H3PO4 at 100V and 150V are shown in Figure 1b and 1d. The density of 
well- defined pores is lower compared to samples oxidised in sulphuric acid, but in a similar way to what is observed upon oxidation 
in sulphuric acid, pores formed at 100V are surrounded by a sort of wall boundary which can not be distinguished around  pores 
formed at 150V. AFM images (Figure 2 b,d,f) provide a direct 3D evaluation of the topography of the sample morphology. Samples 
oxidised at potentials lower than 100V (data not shown) are characterised by the presence of oxide clusters and only a few pits can 
be observed on the surface. This is in agreement with a previous study on titanium anodisation in phosphoric acid at low voltages 
(3-30V) which reported the formation of globular structures [20]. Increasing the anodisation potential up to 100-120V produces 
oxide layers characterised by pores, quite irregular in shape, coexisting with clusters. A more uniform surface morphology is 
observed on samples oxidised at 150V even though some clusters are still present on the sample and coexist with porous areas. 
The comparison of Figure 2e and f shows that pores formed  in phosphoric acid are smaller than those formed in sulphuric acid.
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Figure 1: SEM images of titanium samples after anodisation in (a) H2SO4 at 100V, (b) H3PO4 at 100V, (c) H2SO4  at 150V, (d) H3PO4  at 150V, (e) 
histogram of the equivalent pore diameters of samples anodised in  H2SO4 at 100V, (f) ) histogram of the equivalent pore diameters of samples anodised 
in  H2SO4 at 150V.

The comparative morphological analysis of oxide layers formed in sulphuric and phosphoric acid as a function of the anodisation 
potential indicates that lower potentials are needed to achieve the formation of well-defined mesoporous layers when anodisation is 
carried out in sulphuric acid. This finding is in agreement with a previous study on the anodic oxidation of titanium in phosphoric 
acid that reports the formation of porous layer for potentials from 150V to 250V [15] while well- defined microporous layers have 
been observed upon anodisation at 150V in sulphuric acid [14].

The observation that higher voltages are necessary to develop porous layers in phosphoric acid with respect to sulphuric acid 
can be related to the fact that the onset of pore formation occurs when the applied potential is high enough to cause a dielectric 
breakdown of the oxide layer. The dielectric breakdown voltage depends on several parameters, including solution pH, temperature 
and conductivity. At present we do not have systematic data on the dependence of the onset of pore formation on such parameters. 
However the observation, for M solutions, of higher breakdown potentials in phosphoric acid solution than in sulphuric acid 
solutions [21] could account for the differences in the pore forming potentials observed in the present study.
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Figure 2: AFM images of titanium samples after anodisation in (a) H2SO4 at 100V, (b) H3PO4 at 100V, (c) H2SO4 at 120V, (d) H3PO4 at 120V, (e) H2SO4 at 
150V, (f) H3PO4 at 150V.
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Figure 3a shows the XPS survey spectra of titanium after anodisation in sulphuric (blue curve) and phosphoric (red curve) acid 
solutions. Peaks corresponding to Ti, O and C are present in both spectra. P peaks can be observed in the spectrum of Ti oxidized 
in phosphoric acid electrolytes while no S signal can be detected from the analysis of samples oxidized in sulphuric acid electrolytes. 
The lower surface concentration of electrolyte inclusions detected on samples anodised in sulphuric acid with respect to samples 
anodised in phosphoric acid is consistent with a chemical depth profiling study performed by glow discharge optical emission 
spectroscopy (GDOES) on titanium oxidised in sulphuric and phosphoric acid [22]. The GDOES profiles of samples oxidised 
at 20V and 80V indicate that the S concentration  is lower than the P concentration. Moreover, the P concentration profile has 
a maximum at the oxide surface while the maximum of the S concentration is localised some tens of nm below the surface. It is 
therefore reasonable that no S signal can be detected by a surface technique like XPS. Minor Ca and N peaks are occasionally 
present in the spectra (as can be observed in Figure 3a, red curve). Ca impurities are likely due to the polishing process.

Figure 3: (a) XPS survey spectra of titanium after anodisation in H2SO4 (blue curve) and H3PO4 (red curve) at 120V. (b) Ti2p core level region of a 
titanium sample after anodisation in: H2SO4 at 120V (blue curve), H3PO4 at 120V (red curve), H3PO4 at 120V after 1 hour annealing at 600 °C (green 
curve). Inset: P2p core level region of a sample after anodisation in: H3PO4  at 120 V (red curve), H3PO4 at 120 V after 1 hour annealing at 600 °C (green 
curve).
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To investigate the crystalline structure of the oxide layers we performed Raman spectroscopy measurements. The Raman spectra 
of Ti anodised in sulphuric  and phosphoric acid at 120 V, prior and after 1 hour annealing at 600 °C are reported in Figure 4. The 

The Ti2p core level region spectra of Ti after anodisation in sulphuric (blue curve) and phosphoric (red curve) acid solutions are 
reported in Figure 3b. To address the effect of thermal annealing on the chemical species present on the sample surface, the Ti2p 
spectrum acquired on a sample anodised in phosphoric acid and subsequently annealed is reported for comparison (green curve). 
The Ti2p spectrum of Ti anodised in sulphuric acid is characterised by a well-defined 2p doublet with the 2p3/2  component at 
(459.0±0.2) eV. From the comparison with previous studies on titanium dioxide  [23-26],  the  Ti2p  signal  can  be  attributed  to  
Ti4+,  indicating  the  formation  of  a stoichiometric  oxide.  The  Ti2p  spectrum  of  titanium  samples  oxidised  in  phosphoric  
acid is characterised by a broader peak, which is likely due to the presence of two Ti2p components. The  binding energies of the 
two components are within the energy range of Ti4+  and suggest the presence of two different forms of stoichiometric oxides, 
likely related to the nanostructuring. Annealing results in a narrowing of the Ti2p3/2    peak suggesting some reordering of the 
oxide structure. As can be observed in the survey spectrum (Figure 3a, red curve), anodisation in phosphoric acid produces oxide 
layers with surface P inclusions.   The P2p core level region (Figure 3b, inset) shows a peak at about 134 eV that can be assigned 
to phosphate species [27]. P incorporation in Ti anodised in phosphoric acid has been previously reported in XPS studies of 
anodisation at low voltages [20] and in galvanostatic conditions [28]. The formation of titanium phosphate compounds has been 
reported in a X-ray diffraction study on anodised titanium [21]. As observed for the Ti2p spectrum, annealing produces some peak 
narrowing also in the P2p signal, suggesting some structural reordering of the oxide layer.

Figure 4: Raman spectra of titanium samples after anodisation in: (a) H2SO4 at 120 V, (b) H3PO4 at 120V, before and after 1 hour annealing at 600 °C. 
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As concerns oxidation in phosphoric acid, the XPS Ti2p spectrum shows the presence of two components both related to 
stoichiometric oxide. These two components are likely related to a different sample nanostructuring. A narrowing of the Ti2p 
spectrum is observed upon annealing. The presence of the two components and their evolution with annealing as well as their 
relationship with the anodising potential is an interesting aspect which deserves further investigations. Another interesting 
aspect of samples prepared in phosphoric acid is related to the presence of phosphate inclusions which can be useful in view 
of biomedical application [31]. Under this perspective, oxidation in phosphoric acid solution carried out at higher anodising 
potentials represents a viable strategy to prepare well-developed mesoporous structures with a higher phosphate content. Having 
in mind the developments of biomaterials for implants, a further issue to be addressed will be the design of proper oxide surface 
treatments able to promote  resistance to bacterial adhesion by either using antifouling-antibacterial coatings [32]  or loading the 
pores with biocidic nanoparticles [33].
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