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Introduction: Despite persistently high rates of obesity among American children and adults, the complex interplay between behavior, 
genetics and weight outcomes is not well understood. This study explores the roll that genetic inheritance and behavior play in weight 
determination. 

Methods: Analysis utilizes polygenic risk score-a genome-wide score based on variation in multiple genetic loci and their associated 
weights-to quantify inherited susceptibility to obesity. First, linear mixed models compared the impact of behavior, situational controls and 
demographic characteristics on change in BMI from baseline. Second, multilevel structural equation models tested for mediating effects of 
behavior on genetic BMI predisposition. Mediation algorithms quantified the indirect effect of sleep, exercise, smoking frequency, alcohol 
consumption, screen time and school enrollment on BMI. 

Results: Results showed a direct effect between BMI and polygenic risk, sleep, school enrollment, disordered eating, alcohol consumption 
and smoking frequency. Mediation models indicate that, in addition to the direct effect, these behaviors also asserted an indirect effect on 
BMI through their correlation with polygenic risk. Therefore, behavioral factors mediated the influence of genetic predisposition on BMI. 
Effects showed slight differences for African, European and Hispanic ancestral cohorts.

Discussion: Despite genetic tendency towards a given weight, analysis shows that behavior can moderate or moderate BMI impacts. 
The present study indicated that the degree of behavioral offset varies by ancestral group, but that sleep, disordered eating, screen time, 
smoking and educational attainment played a significant role in weight determination. Findings suggested that obesity prevention and 
weight loss programs should focus on adoption of healthy behaviors in addition weight and BMI. 

Introduction
Body weight is determined by multiple factors including genetic background, eating habits, metabolic rate and general activity 
level [1-4]. The influence of heritability on body weight is estimated to be between 47% to 90% and most recent genome-wide 
association study meta-analyses identified 97 variants robustly associated with adult body mass index (BMI) [5]. While genome-
wide association studies have been successful in identifying several genes associated with body weight and obesity, these genes 
may work by modulating the way individuals respond to environmental variation, develop eating habits and perform activities-
interactions that may not be readily captured by association studies [5-11]. 

Despite the large genetic component of BMI, studies suggest that dietary patterns, physical activity, inactivity, medication use, 
lifestyle or other environmental factors can interact with the genetic pathways to offset weight determining gene variants [12,13]. 
The possibility that genetic predisposition is mediated or modified by behavior has been explored, but the extent to which 
behavior can offset the effects of weight-promoting genes has not been determined [14-20]. Therefore, this study investigates 
the independent and interactive effects of weight-related behavior, environmental characteristics, and genetic influence on BMI 
to determine which behaviors, to what extend and for which ancestral groups health related behavior can mitigate hereditary 
BMI tendencies. First, analysis tests the strength of the genetic influence on BMI using polygenic risk scores (PRGs). Second, 
behavioral characteristics are added to evaluate direct and indirect effects of lifestyle on BMI. Multilevel structural equation 
models evaluate the mediating and moderating influences of sleep, exercise, school enrollment, screen time, and disordered 
eating. Finally, mediation/moderation algorithms quantify degree to which behaviors and genetics interact offset BMI genetic 
predisposition [21-25].

Article history: Received: 31 January 2020, Accepted: 03 June 2020, Published: 05 June 2020



Annex Publishers | www.annexpublishers.com                    
 

Volume 6 | Issue 1

 
Journal of Obesity and Overweight

 
2

Several smaller studies have explored the relative contribution of behavioral, environmental and genetic influence on BMI [34,35] 
but the nature of the interaction remains unclear due to inadequate variation in the genetic locus of interest [36,37]. While males 
and females present different genetic profiles, some studies show similar genetic etiology among adolescent males and females, 
while others found higher heritability in female BMI with results broadly consistent across racial and ethnic groups [26,38]. More 
recent analyses incorporated variants from genome-wide meta-analyses of BMI [39] like the measure used in this analysis-which 
can be easily extended using weighted polygenic risk scores based on a genome-wide genotypes [40].

The degree to which genetics, environment, and behavior influence BMI is complicated by research showing that behavior can also 
be influenced by genetics [26,27]. It is possible that genetic factors exert their influence on body weight by affecting appetitive and 
eating behaviors; therefore, weight is determined by the interaction of genetics, behavior and environmental circumstance [28-33]. 

Methods

During adolescence and young adulthood, research suggests consumption of fruit and vegetable, regular physical activity and 
physical wellness are important to maintaining a healthy weight [41-43]. When adopted early in life, healthy behavior, lifestyle and 
regular physical activity have been shown to carryover from adolescence to adulthood [44].

In addition to individual behavior, environmental and household influences play a role in BMI determination. Socioeconomic 
status (SES) has shown to be strongly associated with BMI-low SES corresponds to higher BMI, particularly in adolescents 
and young adults. However, these results vary according to gender, ethnicity, and nationality [44-50]. Oftentimes, lifestyle and 
behavioral patterns such as dietary habits, physical activity, and sedentary behavior are adopted from those observed in the local 
environment [51]. However, excessive control over behavior and diet can result in deleterious rebound behavior when that control 
is relaxed [19,52]. 

Data

Furthermore, behaviors such as sleep, eating the evening meal with the family, and limiting screen-viewing time have been strongly 
linked to BMI [53]. Sleeping less than 8 hours per day, watching television for 3 hours per day and having more than 5 hours per 
day of screen time was associated with higher body fat and greater risk of overweight [54-57].

Despite the complex weight determination process, this study examines behavioral mitigation of polygenic BMI disposition. Not 
only are sleep, exercise, school enrollment, disordered eating, screen time, smoking frequency and disorder eating directly related 
to BMI, but they also serve as partial mediators to BMI polygenic risk scores. This study proceeds with a discussion of the data and 
statistical methods in Section II followed the estimation results in Section III. Finally, principle findings, policy implications and 
need for further study are outlined in Section IV.

Analysis utilizes data from the National Longitudinal Study of Adolescent to Adult Health (Add Health)-a longitudinal study 
of adolescents who are in grades 7-12 during the 1994-95 school year then surveyed periodically thereafter with five in-home 
interviews. Add Health combines longitudinal survey data on respondents’ social, economic, and physical characteristics well-
being with contextual data on the family, neighborhood, school and biological data, providing a unique opportunity to study 
how behavior and genetics interact as adolescents enter young adulthood. This study utilizes data from Waves I through V which 
contain consistent survey elements allowing longitudinal assessment of similar environmental, behavioral, and demographic 
characteristics. Mean values for all covariates are provided in Table 1.

Descriptive statistics for the participants include in the study

Observations 21065 6080 1157

European Ancestry African Ancestry Hispanic Ancestry

Variable Min Max Mean Std Err Mean Min Max Mean Std Err Mean Min Max Mean Std Err Mean

BMI 13 55 25.804 0.121 13 55 27.840 0.220 13 55 26.763 0.300

Baseline 13 54 22.252 0.113 14 51 23.660 0.197 13 42 23.094 0.279

PGSBMI* -3.332 3.819 -0.009 0.019 -3.256 2.888 -0.017 0.048 -2.791 2.932 -0.045 0.075

Age 12 44 24.732 0.130 12 44 24.941 0.197 12 43 25.168 0.260

Female 0 1 0.440 0.009 0 1 0.358 0.014 0 1 0.462 0.016

Exercise 
(avg. weekly 
frequency)

0 3 1.168 0.009 0 3 1.132 0.012 0 3 1.146 0.013

Enough Sleep 
(0=No, 1=Yes) 0 1 0.673 0.005 0 1 0.629 0.007 0 1 0.666 0.011
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Variable Min Max Mean Std Err Mean Min Max Mean Std Err Mean Min Max Mean Std Err Mean

TV (weekly 
hours) 0 100 12.878 0.215 0 100 17.195 0.385 0 100 13.937 0.433

Smoking (avg. 
days smoked each 

month)
0 30 11.083 0.323 0 30 6.670 0.433 0 30 6.648 0.719

Drinking (days 
drink alcohol in 
last 12 months)

0 6 3.398 0.029 0 6 3.037 0.036 0 6 3.238 0.039

Disordered 
Eating (count of 

behaviors)
0 5 0.989 0.011 0 3 0.902 0.020 0 4 0.991 0.028

Enrolled in 
School (0=No, 

1=Yes)
0 1 0.493 0.006 0 1 0.508 0.009 0 1 0.490 0.007

PC1 Parent 
relationship to 

adolescent**
-0.779 0.170 0.000 0.000 -0.132 0.107 0.000 0.001 -0.628 0.085 0.000 0.001

PC2 Ever lived 
with bio mom** -0.613 0.161 0.000 0.000 -0.097 0.097 0.000 0.001 -0.034 0.246 -0.001 0.001

PC3 Ever lived 
with bio mom** -0.085 0.017 0.000 0.001 -0.051 0.078 0.001 0.002 -0.063 0.056 -0.001 0.005

PC4 Most recent 
year lived with 

bio mom**
-0.450 0.444 0.000 0.000 -0.088 0.082 0.000 0.001 -0.123 0.124 0.001 0.002

PC5 Monthly 
support from bio 

mom**
-0.070 0.186 0.000 0.000 -0.067 0.095 0.001 0.001 -0.116 0.055 0.000 0.003

*=PGSBMI represents a general measure of the influence of additive genetics on a specific phenotype. The calculation of PGSs relies on summary statistics from genome-wide 
association studies (GWASs) to create a weighted sum of the associations between allele frequencies at individual SNPs and the associated phenotype
**= PC represents ancestry-specific principal components of the genome-wide data. These are used to control within the ancestral population. Ancestry-specific principal 
components are estimated from a sample restricted to individuals in the respective genetic ancestry groups. The process estimates the principal components for all unrelated 
individuals in the ancestry specific sample, and then projects those principal components onto the small number of related individuals within each ancestry group

Table 1: Covariate Statistics

Identifying the biological pathways and genes associated with BMI has the potential to facilitate understanding of the physiological 
components [58]. As with other complex health outcomes that are common in the population, BMI appears to be a multifactorial, polygenic 
trait, influenced by multiple environmental factors and multiple genetic loci whose individual effects are small. Since individual effects are 
quite small, one way to identify causal variants is to consider the cumulative associations of multiple single nucleotide polymorphisms 
(SNPs) simultaneously [59]. A Polygenic Risks Score (PGS) is generated by running a genome-wide association study (GWAS) on a 
discovery sample, selecting SNPs on the basis of their association with the phenotype, and creating a sum of their phenotype-associated 
alleles (often weighted by the SNP-specific coefficients from the GWAS), that can be evaluated in a separate replication sample.

A PGS can be thought of as a measure of ‘genetic burden’ associated with a phenotype [59]. PGS represent a weighted sum of the 
associations between allele frequencies and the phenotype resulting in a free measure of the cumulative genetic influences on the 
phenotype being studied. This allows researchers to capture the broad influence of genetics in various analyses [60].

Add Health genotyped samples were categorized into four genetic ancestry groups: European ancestry, African ancestry, Hispanic ancestry, 
and East Asian ancestry. Since results comparing PGSs for individuals of different ancestry groups may be less predictive, ancestral groups 
are analyzed separately [61,62]. Due to sample size restrictions, this analysis is limited to European, African and Hispanic ancestry groups. To 
further account for environmental and other unobserved individual differences, principle components are included in the regression model. 
These controls are discussed in the next section ‘Environmental Measurement’. Add Health recommends adding these principle components; 
however, the structural equation framework would not allow for the inclusion of all PCs due to problems of multicollinearity. Therefore, this 
study calculated a weighted linear combination of the PCs where each item’s weight is its factor loading representing its contribution. This index 
measure accounts for the within group variation and stratification of genetic structure using a single, weight component. 

Environmental Measurement: To understand the relationship between behavior, genetic disposition and BMI, it is important to address 
population stratification and account for differences in genetic structure within ancestry groups as they can relate to allele frequency [63]. 
When dealing with model of genetic and demographic data, [64] research suggests that population’s substructure be captured using elements of 
personal and family background, childhood circumstances and parental characteristics. Five such controls that were found to be confounders 
by previous studies are included in this analysis: relationship to household parent, biological mother living in household, ever lived with the 
biological mother, most recent year lived with the biological mother and  receiving monthly support from the biological mother [65]. Therefore, 
these measures, referred to as PCs, are included in the analysis via a weighted index.

Genetic Measurement
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Demographic Measurement: Self-reported height and weight is used to construct measurement-error adjusted BMI (weight 
in kilograms divided by height in meters squared) for individuals by a wave. Waves I-V are collected when respondents are age 
12 to 18, 13 to 19, 18 to 24, 24 to 30 and 32 to 44 respectively. Race and gender are obtained from genetic data corresponding to 
the respondent’s ancestral cohort. The sample is 63 percent European ancestry, 22 percent African ancestry, 11 percent Hispanic 
ancestry and 4 percent East Asian ancestry.  

Behavioral Measurement: Behavioral controls include sleep, exercise, smoking frequency, alcohol consumption, school 
enrollment, screen time and disordered eating. Respondents were asked whether they dieted, exercised, induced vomiting, took 
diet pills or used laxatives as a means of losing weight or preventing weight gain in the last seven days. Respondents indicated 
which if any, behaviors they intended to target weight. The total number of behaviors respondents reported in a week was used 
to measure frequency of disordered eating. Analysis also includes the number of hours each week spent watching television or 
videos, playing computer or video games or using a computer for surfing the Web, exchanging email, or participating in a chat 
room, an indicator of total screen time. Sleep sufficiency is a binary indicator of having had enough sleep. Smoking frequency 
captures the number of days out of the last 30 that respondents smoked cigarettes. Likewise, the number of days during the past 12 
months during which the respondent drank alcohol indicates regularity of alcohol consumption. Exercise includes the number of 
times in the past week they exercised, including activities, such as jogging, walking, karate, jumping rope, gymnastics or dancing 
or visited a fitness center. School enrollment provides a binary indicator that the respondent was enrolled at least part-time in an 
educational program over the least 12 months. 

Approximately 12,200, or 80% of Add Health participants, consented to long-term archival of genetic information and were 
consequently eligible for genome-wide genotyping. Those participants who provided saliva samples, remained in the survey until 
the third wave, provided requisite behavioral information and had a valid BMI values were included in the sample. Descriptive 
statistics for the sample are listed in Table 1. The analysis was conducted in two stages. In the first stage, analysis explored those 
factors that impact BMI change during the panel. General linear mixed (GLM) models compared the impact of behavior, situational 
controls and demographic characteristics on change in BMI from baseline. Models included gender as a fixed factor and an 
unstructured covariance matrix that allowed for unequal variances and covariances (correlations) between repeated measures. To 
account for BMI genetic predisposition, polygenic risk score for BMI (PGSBMI) was included as a random factor in the model. The 
model takes the form in Equation (1) where Yit= logarithm of BMI for the ith person at time t; U1-U5 are the situational controls. 
T1, t2, t3, t4, t5 t6, t7 and t8 are time-independent covariates for age, screen viewing, sleep sufficiency, exercise frequency, smoking 
frequency, alcohol consumption, disordered eating and school enrollment. D1 is a fixed, time-invariant control for gender, Xit is a 
vector of demographic characteristics and PGSBMIi is risk score.

(1)Yit=β0+β1Ui1+βUi2+β3Ui3+β4Ui4+β5Ui5+β6ti1+β7ti2+β8ti3+β9ti4+β10ti5+β11ti6+β12ti7+β13ti8+β14PGSBMIi+β15di1+β16 Xit+eit

The coefficients β1 to β5 measure the association between the log of BMI and the five situational controls included to account for 
unobserved variation within ancestral cohorts. β6 to β13 capture the relationship between the time-variant characteristics-age, 
screen time, disordered eating, smoking frequency, alcohol consumption, hours of exercise, school enrollment and sleep-and BMI, 
while β14 assesses the impact of polygenic risk, a time-invariant covariant relationship. The coefficient β15 measures the average 
difference in BMI by gender each year. Lastly, β16 captures the effect of demographic characteristics. The error term, eit, accounts 
for respondent and time specific random variation not otherwise controlled. 

The logarithm of BMI is used as a dependent variable, rather than using the simple BMI, which could amplify the heterogeneity 
of the effects in the distribution. While one BMI point represents only a small proportion of the body mass of a person with 
obesity, one BMI point accounts for a substantial proportion of the body mass of a person with low weight. In estimating relative 
or proportional changes, using logarithms re-scales the effects, thus avoiding such amplification. The model is run twice, once 
without the behavioral specifications and once with the behaviors, for each ancestral group. While all ancestral group models are 
similar, the probability values, rather than the magnitudes of the coefficients, highlight differences between cohorts. Regressions 
were performed in SAS 9.4 using Proc Genmod. Goodness-of-fit for each equation model was assessed using the scatterplot of the 
residuals against the fitted y, with SAS 9.4 Proc Gplot.

In the second stage, structural equation modelling (SEM) assessed possible mediating effects of behavior. Mediation analysis 
enables the decomposition of total causal effects into an indirect effect and direct effect. Mediation refers to the transmission of the 
effect of an independent variable on a dependent variable through one or more other variables-referred to as mediators. Mediation 
analysis allows the total effect of PGS on BMI to be decomposed into an indirect and direct effect. The direct effect measures the 
extent to which the BMI changes when the PGS increases by one unit and the mediator variables (behaviors) remain unaltered. In 
Figure 1, the direct is represented by c or c’ when the mediators are included. The indirect effect measures the change in BMI when 
PGS is fixed and the mediator variables change. In Figure 1, the indirect effect is represented by ab. The total effect is equal to the 
sum of the direct and indirect effects (c’ + ab).
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Regression analysis specifies mediation pathways for smoking, drinking, exercising, disordered eating, screen watching and 
sleeping. Polygenic risk was included as an exogenous predictor BMI. The ‘lavaan’ package allowed for missing data to be imputed 
using the full information maximum likelihood method within SEM. To facilitate interpretation, smoking and screen time were 
scaled to a variance of 1. Pathway estimation uses the bootstraps method to measure uncertainty in estimating the mediation 
effects. A vector of weights is used to account for longitudinal sampling variation and response patterns.

Figure 1: Behaviors have both (A) indirect effects; (B) direct effects transmitted through PGS on BMI 

Results
Stage 1 
Results from first stage GLM models are listed by ancestral groups. Unfortunately, the number of missing values and low survey 
response from the East Asian ancestral group left a relatively small sample size which precluded robust estimation. The GLM 
model is estimated twice, without behavioral controls (Table 2) and with behavioral controls (Table 3). Recall that the dependent 
variable is log of BMI. Given that the logarithmic transformation is also applied to baseline BMI, the coefficient represents the 
percent change in BMI. BMI increase by roughly 25 percent over the panel for all ancestry groups. The age coefficient shows a 
five to six percent increase in BMI each year. Females of European ancestry have higher relative BMI than males suggesting larger 
BMI growth among females in this cohort, rather than larger BMI level. Other ancestral groups show similar gender differences 
in BMI growth. 
Behavioral covariates generally have the expected impact on BMI. Sleep, exercise and school enrollment have a negative impact of BMI 
since healthy physical and mental habits reduce body weight.  Screen time, an indicator of a sedentary lifestyle, is positively related to BMI. 
Disordered eating is associated with higher BMI--an indication that individuals with higher BMI are more likely to adopt extreme behaviors 
as an effort to lower body weight. While smoking and drinking frequency are not significant, they have a small negative relationship with 
BMI suggesting that these behaviors could be used as substitutes for food or to curb appetite.

To appropriately interpret the effect of polygenic risk, results from GLM estimation with and without behavioral indicators (Tables 2 and 3) 
should be compared. In the models without behavioral controls, genetic influence is highly significant and increases BMI by three to five 
percent. Since situational and demographic characteristics are controlled, this positive coefficient indicates a strong innate tendency towards 
higher BMI. However, when behavioral controls are added to the model, both the impact and significance decreases (0.55-0.34 for European 
Ancestry; 0.41-0.33 for Hispanic Ancestry; 0.4-0.23 for African Ancestry). While the decline in magnitude and significance suggests that the 
genetic effect could be offset by behavior, this model does not provide sufficient evidence to draw this conclusion. 

Analyses uses structural equation modeling (SEM). SEM can capture complex, dynamic relationships by incorporating the path model 
presented in Figure 1 through a system of linked regression-style equations [66-68]. This application of SEM allows the indirect effect of 
multiple mediators to be separated and their relative mediation effects compared [68]. The model is estimated using the R package lavaan, 
which is available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/lavaan/index.html [69]. 
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The Relationship between BMI, Genetic Risk, and Demographic Characteristics

European Ancestry

Base Full

N 18415 2273

GEE Fit Criteria

QIC
QICu

18510.903
18425

2319.046
2290

Analysis of GEE Parameter Estimates

Estimate Standard Z Estimate Standard Z

Intercept 0.3026*** 0.012 25.27 0.2534*** 0.0235 10.77

Exercise -- -- -- -0.0035*** 0.0009 -3.75

Sleep -- -- -- 0.005** 0.0023 2.17

TV -- -- -- 0.0002 0.0001 1.65

Smoking -- -- -- 0.00014 0.0001 0.67

Drinking -- -- -- -0.003*** 0.0008 -3.64

Disordered Eating -- -- -- 0.0086*** 0.0013 6.43

School -- -- -- -0.004 0.0035 -1.13

PGS 0.0055*** 0.0007 7.78 0.0034*** 0.001 3.31

BMI0 0.255*** 0.0038 67.93 0.2652*** 0.006 44.53

Female -0.0017** 0.0014 -1.23 0.0041** 0.0019 2.1

Age 0.0034*** 0.0001 56.23 0.0043*** 0.0005 8.45

Situational 1 -0.1385 0.0909 -1.52 -0.2911** 0.15 -1.94

Situational 2 0.0594 0.1003 0.59 0.1391 0.195 0.71

Situational 3 0.0102 0.057 0.18 0.0032 0.0676 0.05

Situational 4 0.0169 0.0518 0.33 -0.0477 0.0539 -0.89

Situational 5 0.1015 0.0607 1.67 0.1335* 0.0766 1.74

African American Ancestry

Base Full

N 5106 259

GEE Fit Criteria

QIC
QICu

5182.71
305.2571

305.2571
276

Analysis of GEE Parameter Estimates

Estimate Standard Z Estimate Standard Z

Intercept 0.3641 0.0206 17.66 0.2719** 0.0718 3.79

Exercise -- -- -- -0.0008* 0.0021 -0.36

Sleep -- -- -- -0.0093** 0.0046 -2

TV -- -- -- 0 0.0001 -0.17

Smoking -- -- -- 0.0003* 0.0002 1.63

Drinking -- -- -- -0.001* 0.0017 -0.63

Disordered Eating -- -- -- 0.0118** 0.0035 3.38

School -- -- -- -0.0016 0.0099 -0.16

PGS 0.0023 0.0015 1.56 0.0044* 0.0027 1.65

BMI0 0.2385*** 0.0063 37.68 0.2705*** 0.0146 18.58

Female -0.0188*** 0.0028 -6.73 0.0027* 0.0059 0.46

Age 0.0035*** 0.0002 23.18 0.0021 0.0021 1.19

Situational 1 -0.1074 0.0704 -1.53 -0.323 0.1789 -1.81

Situational 2 0.3641 0.0637 0.78 0.015 0.0992 0.15

Situational 3 0.031 0.0812 0.38 -0.0485 0.1466 -0.33

Situational 4 0.0081 0.0704 0.12 0.0843 0.1406 0.6
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Estimate Standard Z Estimate Standard Z

Situational 5 0.0008 0.0712 0.01 -0.267** 0.0762 -3.51

Hispanic Ancestry

Base Full

N 18415 262

GEE Fit Criteria

QIC 18510.903 301.1568

QICu 18425 279

Analysis of GEE Parameter Estimates

Estimate Standard Z Estimate Standard Z

Intercept 0.3128*** 0.0268 11.69 0.2007*** 0.0482 4.16

Exercise -- -- -- -0.0022 0.0022 -1.03

Sleep -- -- -- 0.0009 0.0034 0.25

TV -- -- -- 0.0001 0.0001 0.58

Smoking -- -- -- -0.0001 0.0002 -0.48

Drinking -- -- -- -0.0028 0.0018 -1.55

Disordered Eating -- -- -- 0.0049 0.0037 1.31

School -- -- -- -0.0051 0.0099 -0.52

PGS 0.004* 0.0022 1.81 -0.0033 0.003 -1.08

BMI0 0.2522*** 0.0082 30.69 0.274*** 0.0144 18.97

Female -0.0017 0.0035 -0.48 -0.003 0.0053 -0.57

Age 0.0033*** 0.0001 28.33 0.0064*** 0.0011 5.75

Situational 1 0.2116 0.1679 1.26 0.0352 0.1881 0.19

Situational 2 -0.075* 0.0461 -1.62 -0.0478 0.1594 -0.3

Situational 3 0.0237 0.1012 0.23 -0.0731 0,.0812 -0.9

Situational 4 0.0066* 0.0656 0.1 -0.0934 0.1184 -0.79

Situational 5 0.0583 0.0829 0.7 -0.0169 0.0737 -0.23

Table 2: Base Regression

Mediation Model: Relationship Between BMI, Genetic Risk, and Demographic Characteristics

European Ancestry

lhs rhs label est se Z

lBMI Exercise b1 -0.0099*** 0.0018 -5.4893

lBMI Sleep b2 0.0114** 0.0050 2.3012

lBMI TV b3 0.0044* 0.0023 1.8641

lBMI Smoking b4 0.0037** 0.0018 2.0287

lBMI Drinking b5 -0.0077*** 0.0017 -4.5693

lBMI Disordered Eating b6 0.0246*** 0.0034 7.1440

lBMI School b7 -0.0292*** 0.0070 -4.1681

lBMI PGSBMI c 0.0109*** 0.0026 4.2370

lBMI lBaseline 0.8715*** 0.0146 59.4908

lBMI Female 0.0111** 0.0046 2.4002

lBMI Age 0.0125*** 0.0008 15.0852

lBMI PC_Sum 0.0239 0.0777 0.3069

Exercise PGSBMI a1 -0.0115 0.0198 -0.5814

Sleep PGSBMI a2 0.0272** 0.0101 2.6923

TV PGSBMI a3 -0.0194 0.0202 -0.9591

Smoking PGSBMI a4 0.0527 0.0201 2.6170

Drinking PGSBMI a5 -0.0418 0.0270 -1.5481

Disordered Eating PGSBMI a6 0.0249 0.0160 1.5534

School PGSBMI a7 -0.0053 0.0067 -0.7876
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Significance: ***=1%, **=5%, *=10%
Table 3(A): European Ancestry 

lhs rhs label est se Z

ExerciseIDE a1*b1 ExerciseIDE 0.0001 0.0002 0.5861

SleepIDE a2*b2 SleepIDE 0.0003* 0.0002 1.7801

TVIDE a3*b3 TVIDE -0.0000*** 0.0001 -0.8124

SmokeIDE a4*b4 SmokingIDE 0.0002* 0.0001 1.6869

DrinkIDE a5*b5 DrinkingIDE 0.0003 0.0002 1.3825

Count_loseIDE a6*b6 Disordered_EatingIDE 0.0006 0.0004 1.4556

SchoolIDE a7*b7 SchoolIDE 0.0002 0.0002 0.7736

sumIDE (a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) sumIDE 0.0016** 0.0006 2.5144

Total c+(a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) total 0.0125*** 0.0025 5.0169

Significance: ***=1%, **=5%, *=10%
Table 3 (B): African Ancestry

Mediation Model: Relationship Between BMI, Genetic Risk, and Demographic Characteristics

African Ancestry

lhs rhs label est se z

lBMI Exercise b1 -0.0008 0.0057 -0.1458

lBMI Sleep b2 -0.0102 0.0137 -0.7471

lBMI TV b3 0.0006 0.0052 0.1235

lBMI Smoking b4 0.0016 0.0072 0.2241

lBMI Drinking b5 -0.0029 0.0043 -0.6632

lBMI Disordered Eating b6 0.0304*** 0.0082 3.6889

lBMI School b7 -0.0736** 0.0258 -2.8534

lBMI PGSBMI c 0.0053 0.0068 0.7857

lBMI lBaseline 0.9107*** 0.0405 22.5044

lBMI Female -0.0061 0.0134 -0.4553

lBMI Age 0.0089** 0.0037 2.4199

lBMI PC_Sum -0.1748 0.1160 -1.5075

Exercise PGSBMI a1 -0.0469** 0.0696 -0.6729

Sleep PGSBMI a2 -0.0506** 0.0286 -1.7680

TV PGSBMI a3 -0.1124 0.1058 -1.0622

Smoking PGSBMI a4 -0.0167 0.0577 -0.2896

Drinking PGSBMI a5 -0.1251 0.1220 -1.0255

Disordered Eating PGSBMI a6 -0.0228 0.0530 -0.4310

School PGSBMI a7 -0.0227 0.0218 -1.0443

ExerciseIDE a1*b1 ExerciseIDE 0.0000 0.0003 0.1420

SleepIDE a2*b2 SleepIDE 0.0005 0.0007 0.7258

TVIDE a3*b3 TVIDE -0.0001 0.0006 -0.1230

SmokeIDE a4*b4 SmokingIDE 0.0000 0.0001 -0.1799

DrinkIDE a5*b5 DrinkingIDE 0.0004 0.0006 0.5981

Count_loseIDE a6*b6 Disordered_
EatingIDE -0.0007 0.0017 -0.4131

SchoolIDE a7*b7 SchoolIDE 0.0017 0.0018 0.9144

sumIDE (a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) sumIDE 0.0018 0.0029 0.6159

Total c+(a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) total 0.0071 0.0075 0.9523

To assess whether behaviors can offset genetic disposition, structural equation mediation models are run for each ancestral 
group (Table 4). The mediation analysis revealed that the path PGS, BMI and behavioral mediators. While analysis tested the 
use of polygenic risk as the mediator, the model showed higher explanatory power when behaviors were used to mediate genetic 
disposition (Table 4). Since no one behavior was likely to fully mediate genetic influence, all seven behavioral factors were included 

Stage 2
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in a partial mediation model. The model therefore tested which behaviors, if any, offset PGS and to what extent.  Models are run 
separately for European, African and Hispanic ancestral groups. Models provide magnitude and significance for the direct effect of 
each behavior on BMI, indirect effect of each behavior on BMI, indirect effect of each behavior on PGS and the cumulative direct, 
indirect and total effects. Estimates of direct behavior effects remain consistent with those found in the GLM model. 

Mediation Model: Relationship Between BMI, Genetic Risk, and Demographic Characteristics

European Ancestry

lhs rhs label est se z

lBMI Exercise b1 -0.0028 0.004660207 -0.5941227

lBMI Sleep b2 0.0090 0.0083479 1.08971848

lBMI TV b3 0.0010** 0.004694199 2.05872279

lBMI Smoking b4 0.0067 0.008504501 0.78795138

lBMI Drinking b5 -0.0071** 0.003601913 -1.9790835

lBMI Disordered Eating b6 0.0192** 0.007328107 2.63318699

lBMI School b7 -0.0207 0.01707633 -1.2126

lBMI PGSBMI c -0.0087 0.007316321 -1.1901517

lBMI lBaseline 0.8978*** 0.030544002 29.3927302

lBMI Female 0.0025 0.01102408 0.23108489

lBMI Age 0.0182*** 0.002358813 7.69880804

lBMI PC_Sum -0.0456 0.152984034 -0.2980459

Exercise PGSBMI a1 0.0436 0.064041786 0.68004027

Sleep PGSBMI a2 -0.0261 0.029849985 -0.8757767

TV PGSBMI a3 0.0190 0.055244051 0.34405834

Smoking PGSBMI a4 -0.0447 0.069735073 -0.6413974

Drinking PGSBMI a5 0.0046 0.090392127 0.05110427

Disordered Eating PGSBMI a6 0.0767** 0.037307265 2.05717099

School PGSBMI a7 -0.0400** 0.014992917 -2.6714404

ExerciseIDE a1*b1 ExerciseIDE -0.0001 0.000287276 -0.419739

SleepIDE a2*b2 SleepIDE -0.0002 0.000276354 -0.8605249

TVIDE a3*b3 TVIDE 0.0002 0.000535335 0.34312411

SmokeIDE a4*b4 SmokingIDE -0.0003 0.000449187 -0.6672675

DrinkIDE a5*b5 DrinkingIDE -0.0000 0.000644096 -0.0511251

Count_loseIDE a6*b6 Disordered_EatingIDE 0.0015 0.00096417 1.53597371

SchoolIDE a7*b7 SchoolIDE 0.0008 0.000819888 1.01155457

sumIDE (a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) sumIDE 0.0018 0.001709691 1.05454087

total c+(a1*b1)+(a2*b2)+(a3*b3)+(a4*b4)+(a5*b5)+(a6*b6)+(a7*b7) total -0.0069 0.007939727 -0.8696259

Significance: ***=1%, **=5%, *=10%
Table 4: Hispanic Ancestry

Sleeping, school enrollment and disordered eating appear to be correlated with PGS for all ancestral groups and alcohol 
consumption has a significant effect for Hispanics and European ancestral groups only. Therefore, these characteristics have a 
direct and indirect effect on BMI. Exercise, screen time and smoking do not show strong associations with PGS or BMI. The sum 
of the direct and indirect effects combined with the level of the genetic association score result in the overall weight effect. For sleep 
and school enrollment, adoption of these behavior lessens the PGS association. For disordered eating and alcohol consumption, 
their associations enhance the role that PGS plays in BMI determination. 

These significant associations between disordered eating, alcohol consumption, sleep and school enrollment can be explained by 
the recent evidence from other genetic association studies. Evidence suggests that eating disorders, such as anorexia nervosa, are 
50 to 60 percent heritable. These studies show a connection between anorexia and a locus overlapping six genes on chromosome 
12 [70]. Likewise, heavy alcohol consumption, alcohol use disorder (AUD) or both were found to be linked to 18 genetic variants 
[71]. A study in the United Kingdom identified 78 loci for self-reported habitual sleep duration these same loci were also associate 
with accelerometer-derived sleep duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis 
[72]. Similar associations have also been found for genetic loci of education and school attendance [73]. In general, research 
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involving genetic associations shows shared links with anthropometric, cognitive, metabolic, and psychiatric traits. Therefore, the 
causal links between individual traits and the genetic basis for inter-individual variations is a complex process involving multiple 
biological pathways.

Results suggest that the impact of genetic disposition on BMI is partially transmitted through behavior. Behavior-school enrollment 
disordered eating, sleep and alcohol consumption-serves as a partial mediator. The mediation corresponds to an indirect effect 
of PGS on BMI that passes through each of the behavioral covariates. The magnitude of the indirect effect indicates the amount 
of mediation that passes through the behavioral variables. Results show that multiple behaviors serve jointly as mediators at the 
same stage in a causal model, such that several indirect effects linking polygenic risk score to BMI. While it is virtually impossible 
to disentangle the relationship between genetic traits and behaviors, results show that the behaviors included in the model serve 
as partial mediators. The importance of this mediation is discussed in the next section. 

The strength of this study is that it analyzed a nationally representative population of adolescents and young adults comprising a 
well-phenotyped cohort. Furthermore, it utilized longitudinal data on lifestyle behavior using a systematic approach to address 
potential lifestyle mediators in the relationship between genetic variants and BMI. The first stage of analysis showed that these 
associations transcend age, ancestral cohort and gender. The second stage illustrated the nature of these associations and which 
behaviors mediate polygenic risk score providing insight into the weight determination process.

One of the limitations was that estimation relied on self-reported weight and height rather than body mass index based on 
measured values. Additionally, sample size restrictions prevented the analysis of all four ancestral cohorts. The paper did not rely 
on any formal theoretical framework to select lifestyle and behavioral covariates but rather selected those most robust response 
items from Add Health questionnaire items and those found to be significant in previous analyses. 

The major limitation of this and other genetic-lifestyle studies is their inability to identify the individual and combined effects of 
the genetic and lifestyle risk factors i.e., answer the question of how genetic predisposition and behavior combine to determine 
body weight. Moreover, observational studies are susceptible to multiple sources of bias (e.g., selection or recall bias) because 
environmental exposure and the outcome of interest are assessed simultaneously. Critics of genome association studies argue that  
the single-nucleotide polymorphisms (SNPs) identified in GWAS explain only a small fraction of the heritability of complex traits 
[74] and may represent spurious associations [75], that do not necessarily pinpoint causal variants [76] thus yielding too many 
loci rendering them uninformative [77].

Body weight is the result of a complex interplay of inherited factors, environment, and behavior. Using data from GWASs, research 
can explore the relationship between body weight, genetics and behavior; however, disentangling the relationship between 
heredity, behavior and weight is difficult because genetics also plays a role in eating and other weight-related behavior. Despite 
the importance of genetics, lifestyle, behavior, environment, and activity level can interact to dampen or amplify polygenic BMI 
risk.  To date, little is known about which behaviors and to what extent they can offset/accelerate genetic BMI disposition. This 
study attempts to explain which behaviors can offset genetic influence, the degree to which behavior can serve to dampen genetic 
influences, and whether targeted weight loss behaviors can be effective. Results generate a better understanding of the causal 
pathways that lead to BMI level and potentially effective modes of intervention. 

This study examines the impact of sleep, exercise, school enrollment, screen time, smoking frequency, alcohol consumption and 
disorder eating on BMI. These behavioral influences are only realized through the mediation framework. Mediation analysis 
shows that sleep, disordered eating and school enrollment are significant for all ancestral groups and alcohol is significant for non-
blacks. Not only do these behaviors have a direct effect on BMI; they also serve as partial mediators to BMI polygenic risk scores 
in the path from PGS to BMI altering the magnitude of the genetic effect on BMI. 

Discussion 

Conclusion

It is important to note that the mediation model is a causal model and behaviors are presumed to impact BMI, not vice versa. While 
these healthy lifestyle attributes mediate the genetic impact and generally reduce BMI levels, unhealthy attributes can amplify the 
genetic impact and increase BMI. This suggests that lifestyle, either healthy or unhealthy, is the primary mediator. However, recent 
research suggests that education, disordered eating, alcohol consumption and sleep are at least, in part, hereditary. Therefore, it is 
possible that similar SNPs could be related to BMI, behavior and lifestyle choices. 

Despite the complexities of analyses including genomic association, this study provides evidence that lifestyle impacts BMI 
through a variety of channels. While genetic BMI susceptibility may be managed by healthy lifestyle modifications, it can also 
be exacerbated by unhealthy choices [78-81]. Nevertheless, a healthy lifestyle and lifestyle modifications appear to be the most 
efficient tools for weight management, obesity prevention and overall health. Since genetics and lifestyle both influence individual 
weight, interventions should likely be personalized according to genotype in order to be more effective. 
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