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Abstract

In this work, the dynamic behavior of a wet long  bone that has been modeled as transversely isotropic hollow cylinder 
of crystal class 6 subjected to rotation is investigated. The solution wave for the wave propagation problem is expressed 
in term of a potential function which satisfies an eight-order partial differential equation, whose solutions lead to the 
derivation of the explicit solution of the wave equation. The mechanical boundary conditions corresponds to those 
of stress free lateral surface, while the fluid boundary condition correspond to of fluid stress free lateral surfaces. The 
satisfaction of the boundary conditions leads to the dispersion relation which is solved numerically. These frequencies 
are computed for poroelastic bone in terms of several values of the rotation and bone porosity.The results can benefit 
the theoretical development of orthopedic study projects connected to cylindrical poroelastic long bones. A comparison 
was made between the theoretical findings and the in vitro experimental values reported by a previously developed non-
contacting device.
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Introduction

The tissues of the bones are categorized into two types. The first type is the cancellous bone whose volume fraction of solid is 
low (less than 70%), whereas the second type is known as the cortical bone that has more than 70% solid field. Cancellous bone 
consists of two components, namely fatty marrow in the pores and calcified bone matrix. The study of the propagation of waves 
over a continuous medium is important practically in bio-engineering, medicine, and engineering. Moreover, applying poroelastic 
materials in some fields of medicine, e.g., orthopedics, dentistry, and cardiovascular medicine are common. In orthopedics, the 
propagation of waves through bone shelpsmonitor the rate of fracture curing. Theoretical wave propagation problems in wet bone 
are also considered [1-4]. Biot [5] developed the fundamental relation and consolidation for poroelastic media. The authors of [6] 
explored the stresses in human long bones. A micro-level 3D computational study of Wolff 's law via the remodeling of trabecular 
bone in the human proximal femur using design space topology optimization was investigated by Boyle and Kim [7]. Elastic wave 
propagation for the surface bone of alveolar bone remodeling was studied by Mengoni and  Ponthot [8]. Internal remodeling of 
poroelastic bone was investigated by Papathanasopoulou et al. [9]. The surface of the remodeling of bone under electromagnetic 
loads was studied by Qu et al. [10]. The surface waves of the remodeling of bone show several dynamic responses in disuse and 
overload,as studied by Hazelwood et al. [11]. Additionally, the authors of [12] examined the mechanical adaptation of trabecular 
bone combining cellular accommodation and the impacts of micro damage and disuse. Thenumerical calculations of the remodeling 
of bones sensitive to harmonic load over a poroelastic performance were studied by Malachanne et al. [13]. General analysis of 
mathematical models of the remodeling of bones was investigated  by  Zumsande et al. [14]. Ramtani and He [15] investigated the 
surface of wet of the remodeling of bone driven by metallic pin fitted into the medulla of a long bone. Ganghoffer [20] studied the 
surface growth's mechanics and thermodynamics. The authors of [16] explored the surface of the remodeling of bones of diaphysial 
surfaces under frequency load. Tsili [27] obtained the phase velocity for the internal remodeling of bones of diaphyseal shafts using 
Lame’s potential.Jang and Kim [18] discussed the numerical simulations of simultaneous cortical and trabecular bone changesin 
the human proximal femur during the remodeling of bones. Martínez et al. [19] examined the propagation of waves in wet bone in 
damage mechanics and boundary elements. The authors of [20] solved analytically the thermo-electro-elastic for the remodeling of 
surface bones subjected to axial and transverse loads. Kameo et al. [21] explored the functional adaptation of trabeculae predicted 
by the remodeling of bones subjected to loading frequency. The dynamic behavior method such as wave propagation and vibration 
of bone is necessary in measuring in vivo properties of bone by the above non-invasive method [22-29].

In the present paper, we explore the propagation of waves in poroelastic bone subjected to a rotation. The analytical solution for the 
propagation of waves in a wet bone subjected to a rotation was obtained, which satisfies the fundamental equation whose solutions 
lead to the derivation of the frequency equations for certain boundary circumstances. The numerical solution of the equations of 
frequency was obtained using the bisection method.The numerical findings showed the applicability of the proposed solutions and 
the impact of the rotation on the surface of the bones. The coefficients of the poroelastic bone were concluded for the different 
values of the rotation and the porosity of bones.

Formulation of the problem 

The system of solid plus fluid is assumed to be a system with conservation properties. The solid part is considered to have 
compressibility and shearing rigidity and the fluid to be compressible. The deformation of a unit cube is assumed is assumed to be 
completely reversible.  The system geometry is defined  by providing cylindrical coordinates ,,, zr θ  as shown in Figure 1.

Modelling on the concept of the Biot [5] the constitutive equations for a transversely isotropic  case  with z as the axis of the 
symmetry are taken in polar  coordinates as
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The σij (i,j=1,2,3) and σ are the average stresses of solid and fluid,  respectively , with elastic constants Cij, M, Q, R and 
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The equation of motion  of the flow is
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∂ ∂ ∂
 is a Laplacian operator in polar coordinates, μ is the viscosity, f 

is the porosity and krr, kzz are the permeability of the medium. The average displacements of solid and velocity of fluid phases are 

taken as ui and vi respectively.The strains are expressed as 

Figure 1: Schematic of the problem
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and dilation of the phases as iiue ,= and iiv ,=ε
For a material of crystal class 6 the equations of motion in cylindrical coordinates  are given as
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Solution of the problem

Consider  a homogeneous, transversely isotropic, infinite hollow poroelastic cylinder with inner and outer radii a and b respectively, 
having a thickness h whose axis is in the direction of the z-axis. 

where zrzr vvvuuu ,,,,, θθ are mechanical displacements and velocities, k is the wavenumber, p is the frequency and h  is the 
thickness of the cylinder abh −= ,  Ω  is the rotation and ηψφ ,,, w are secular potentials and it  functions of r andθ .

Substituting (1),(3),into the equations(2),(4),and using (5), the following equations are obtained.

By defining the dimensionless, coordinate rx
h

=  and khε =  the above equations are written in dimensionless parameter x and ε as

Let
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2 2 2 2
66[ ( ) ( ) ] 0c ch chε ψ′ ′∇ − + − Ω = (7a)

where 

The reason for ξ being defined as above and not been solved for the variation  is that the flow of fluid through the boundaries of 
bone does not take place during the study of the propagation of  waves. However  can  be calculated if the flow of the boundaries 
is prescribed.

Writing an equation (7) in the determinants from

Using Eq. (10), the proposed solutions of equation(5) can be written as

where

Evaluating the determinant form, the following equations are obtained
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Where, 2
iα are the non-zero roots of the equation

Where,  di  and  ei  are given by

Solving equation (7a) we have 

Where

For traction-free boundary conditions in the present study, stresses must vanish on the inner and outer surfaces of the hollow 
cylinder, i.e.,

We calculated the numerical findings of the frequency equation considering the Matlab package for the hydrated bone. The 

frequency equation has an infinite number of roots because it is transcendental. The frequencies (i.e., the roots of Eq. (20)), n = 0, 

the axisymmetric mode, and flexural n = 1, 2 modes are provided. The results are assessed in the range 0 < ε1 < 4 and 0 < ch < 4, 

with the ratio of 3.0.b
a

= . The values of the elastic constant of the bone are derived from [8], and the poroelastic constant is assessed 

using the expression given by

where aa
h
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Using equations (5),(12),(15) in (1), we obtain frequency equation in the form 

Frequency equation

Numerical results and discussion 
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The expressions of γ, δ, χ are given by 

where, c equals zero for the incompressibility of the fluid.

The porosity of the bones of the people aged 35-40 years equals 0.24. To assess one more poroelastic constant, 12

13

M c
Q c

≅  as the 

value M is not provided. Because the fluid is isotropic, brr = bzz. The density of the fluid in the porospace, the permeability of the 

medium, and mass density of the bone can be assessed. For different frequency values, the wave numbers, the wave velocity, and 

the attenuation coefficients are derived from the frequency equation (Table 1).

Figure 1:  shows that the  schematic of the problem.

Figure 2: shows that the variation of thesecular determinant ,ija  wave velocity Re( )ija  and attenuation coefficient Im( )ija

with respect to thickness h for different values of wave number k. It is observed that the,secular determinant, wave velocity and 

attenuation coefficient increase with increases of the wave number,  while it increases with increasing of the thickness in the interval 

0 ≤ h ≤ 0.08, as well as there is no significant variation on the secular determinant, wave velocity  and attenuation coefficient  in 

the interval 0.08 ≤ h ≤ 1.

Figure 3: shows that the variation of the secular determinant ,ija wave velocity Re( )ija and attenuation coefficient Im( )ija

with respect to thickness h for different values of porosity f. It is obvious that the secular determinant,  wave velocity  and 

attenuation coefficient increase with increases of the porosity,  while it increases with increasing of the thickness in the interval 

0 ≤ h ≤ 0.08, as well, there is no significant variation on the secular determinant,wave velocity  and attenuation coefficient  in the 

interval 0.08 ≤ h ≤ 1.

Figure 4: shows that the variation of the secular determinant ,ija  wave velocity Re( )ija and attenuation coefficient Im( )ija

with respect to thickness   for different values of rotation  while the attenuation coefficient increases with increasing of rotation.  It is 

observed that the secular determinant and  wave velocity increase with increases of the rotation,  while it increases with increasing 

of the thickness in the interval 0 ≤ h ≤ 0.08, as well, there is no significant variation on the secular determinant,  wave velocity  and 

attenuation coefficient  in the interval 0.08 ≤ h ≤ 1. This behavior was projected by other models [28,29] and experimental studies 

[30,31].

The case of the complex conjugate roots has not been handled. These cases possibly happen for specific combinations of bone property 

values. Consequently, much more complex computation is required since for each step both the real and imaginary parts of the 

determinant components must be calculated. We handled  those cases successfully (Figures 2,3 and 4).

3(1 2 ) , 0.6 ( )and f c
E

νχ δ χ γ δ−
= = = − (20)

C11 C12 C13 C33 C44 a b

2.12 0.95 1.02 3.76 0.75 0.8 1.4

Table 1: The main geometric dimension of the femur 
and the corresponding material properties
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(a) (b)

Figure 2: Variations of the secular determinant ,ija wave velocity Re( )ija  and attenuation coefficient 
Im( )ija  with respect to  the thickness  h  for different values of wave number … k=0.5,  ooo k=1, *** k=1.5.

(c)



Annex Publishers | www.annexpublishers.com                    

9          Journal of Orthopaedics and Physiotherapy

 
                           Volume 4 | Issue 1

(a) (b)

Figure 3: Variations of the secular determinant ,ija wave velocity Re( )ija  and attenuation coefficient 
Im( )ija  with respect to  the thickness  h  for different values of porosity  ***... f 0.24 ,ooo f 0.26 ,  f 0.28.= = =

(c)
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Figure 4: Variations of the secular determinant ,ija wave velocity Re( )ija  and attenuation coefficient 
Im( )ija  with respect to  the thickness  h  for different values of  … =2,  ooo   =4,  *** =6.Ω Ω Ω

(a) (b)

(c)
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Conclusion

After examining the propagation of waves in hollow poroelastic bone with a circular cylindrical cavity of infinite extent, the authors 

conclude that

1. Bones are heterogeneous and anisotropic. The solid part is perfectly elastic and the fluid part is Newtonian viscous and compress-

ible. The pores are interrelated and the flow of fluid resulting from bone deformation is controlled by Darcy’s law.

2. We explored the propagation of waves in an infinite hollow rotating cylinder of crystal class 6. We did the analysis, and the solution 

to the problem was described concerning the potential function. The resulting frequency equation was solved numerically.

3. The numerical results illustrated that, except for the mechanical conditions, the rotation, wave number  and the porosity can influ-

ence the propagation of waves on the bone. This feature can be taken into account and employed in controlling the healing process of 

the injured bones. All results are obtained based on the numerical model that may differ from those of the individual bone materials. 

Thus, more experimental validation is essential before using the present results for the clinical practice. 

4. We made observations of the effect of the rotation, wave number and porosity in wave propagation in wet bone’s surface.

5. In short, we can have a theoretical simulation of the in vivo case by taking thme properties of the muscle and the skin that cover 

bones in the limbs.

Appendix

http://www.annexpublishers.com/articles/JOP/4103-Appendix.pdf
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