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Abstract
Purpose: In this article, we review main clinical trials reported in the past decade.
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Stem cells are undifferentiated cells with unlimited proliferative ability of self-renewal differentiating into differentiated cells. 
Limbal stem cells are nested in an optimal microenvironment or “niche”. The importance of limbal stem cells in maintaining the 
corneal epithelium throughout life has long been recognized. Limbal epithelium consists of a non-keratinized stratified squamous 
epithelium and located between corneal and conjunctival epithelia [1-5]. It has been found to include a source of stem cells (SCs) 
known as corneal epithelial SCs or limbal stem cells (LSCs). Limbal Stem Cell Deficiency (LSCD) is a heterogeneous group of 
diseases in which the limbal epithelial stem cells (LESCs) are depleted by excessive damage or disease in the limbus to replenish the 
consistent corneal epithelial regeneration [6]. There are several procedures to address LSCD; some of the most global procedures 
are keratolimbal allograft (KLAL), conjunctival limbal autograft (CLAU) and simple limbal epithelial transplantation (SLET).  In 
this review, we want to focus on stem cell field in the ophthalmology especially limbal stem cells.

Methods: Stem cells are relatively undifferentiated, with unlimited proliferative ability; self-renewal capability and also they can 
differentiate into specialized cells. Somatic stem cells in adult organisms are responsible for regenerating and self-renewing tissue. 
Many different stem cell types reside in the eye. 

Results: One of the most important stem cells is limbal stem cell that retains in an undifferentiated state and exists in an optimal 
microenvironment or “niche”. The importance of limbal stem cells in maintaining the corneal epithelium throughout life has long been 
recognized. Furthermore, stem cells in the retina have been suggested for treatment of the retinal degeneration, which generally results 
in constant visual disturbance or even blindness. 

Conclusion: This review will briefly focus on the principal stem cells in the eye especially limbal stem cells.

We conducted a review of the literature using PubMed database to gather relevant English articles with the keywords “stem cell” 
and “eye” or “ophthalmology”. Relevant articles during the past decade were selected.

Methods

Results
Limbal stem cells
Corneal epithelial stem cells: The ocular surface of the eye is covered with corneal epithelial surface, limbus, and conjunctiva [1]. 
Cornea has several roles such as: refraction, photo protection, transparency, and protection of internal ocular structures from the 
external environment [2,3]. Mature corneal epithelium is five or six layers of non-keratinizing stratified squamous epithelial cells 
with about 0.05 mm thickness and derived from the head surface ectoderm overlying the lens after invagination. The development 
of the cornea is a terminal inductive event in eye formation [4]. Conjunctival epithelium is the significant epithelium of the ocular 
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surface expanding from the posterior margin of the eyelids, posterior surface to the peripheral edge of the tarsal plate, then folds 
back to the sclera and then continues as the limbal epithelium [1-5]. Limbal epithelium consists of a non-keratinized stratified 
squamous epithelium and located between corneal and conjunctival epithelia [6]. It has been found to include a source of SCs 
known as corneal epithelial SCs or LSCs [7,8].

Concept of LSC: The repair and regeneration throughout the life of the adult cornea is responsible by LSC population [9]. In order to 
replenish the SC population, only one of the daughter cells is divided asymmetrically and can re-enter the niche and become a stem 
cell [6]. The characteristics of these stem cells are undifferentiated, slow-cycling, self-renewal, to have high proliferative potential, 
small size, and high nuclear to cytoplasm ratio [10-12].  The other cell is destined for differentiation to transient amplifying cell 
(TAC) which migrates to the corneal epithelium divides at an exponential rate and will finally differentiate into a post-mitotic cell 
(PMC) that can no longer multiply. The PMCs differentiate and mature into terminally differentiated cells (TDC) that represent 
the final phenotypic expression of the tissue type [6].

Limbal epithelial stem cell markers: The ability to identify SCs in different organs has been prevented by nonspecific and unreliable 
markers. α-enolase is expressed in embryonic basal cells and localize to limbal basal epithelial cells without cytokeratin 3 (CK 3) 
and it is suggested as a potential stem cell marker [21,22]. The relation of LESC [23] can identify the existence of associated markers 
(e.g. ABCG2, vimentin, and cytokeratin 19) and the lack expression of differentiation markers (e.g. CK 3/12, connexin 43, and 
involucrin). Many of these markers are identified in early TACs. Consequently, small size of cell, high nucleus to cytoplasm ratio 
and other morphological, phenotypic and functional characteristics of stem cells are used with stem cell markers [24]. In Table 1, 
some important markers are described [25-34].

LSC niche: Stem cells in all renewable tissues are normally located in a unique and appropriate microenvironment called niche, 
which supports self-renewal and multipotential activity and nurtures the stem cells. SCs organized in a ridge-like structure around 
the circumference of the cornea, which have been suggested the ridge to be the rudimentary niche for LSC [13]. Some studies 
indicate that the adult LSC niche exists within the basal interpalisade epithelial papillae of the Palisades of Vogt which contains 
radially-oriented fibrovascular ridges. These are concentrated along the superior and inferior limbus and found at the corneoscleral 
limbus [14]. The function of normal SC depends more on their niche than their gene expression patterns. Interaction between 
stem cells and their niches are critical for regulating SC function such as quiescence, apoptosis, division, or differentiation of stem 
cells [15,16]. SC behavior is regulated by wide variety of cells, including neighboring cells, signaling molecules (integrins, Wnt/β-
catenin,and Notch), local environmental factors such as extracellular matrix, and other intercellular contacts [17-19]. The precise 
molecular mechanism by which the stromal niche regulates limbal stem cells is just beginning to be understood [20].

* DNp63α is one of 3 isoforms of p63 without an added transactivation domain (There are 
6 isoforms of p63) has been shown to be more specific for LESCs than the other isoforms. 
[31] LSC: limbal stem cell. ATP: adenosine triphosphate
Table 1: Important stem cell markers

World Health Organization (WHO) estimates that 10 million of 45 million bilaterally blind people worldwide are the result of 
corneal involvement [35]. LSCD is a heterogeneous group of diseases in which the LESCs are depleted by excessive damage or 
disease in the limbus to replenish the consistent corneal epithelial regeneration. LSCD occurs in genetic or acquired disorders. 
There are hereditary or genetic causes, such as aniridia, keratitis associated with multiple endocrine deficiencies, epidermal 
dysplasia (ectrodactyly-ectodermal dysplasia-clefting syndrome, Keratitis-ichthyosis-deafness (KID)  Syndrome) [36,37]. 
Aniridia(developmental dysgenesis of the anterior segment of the eye) caused by mutations in the pax6 gene. Pax6 is essential for 
eye development (oculogenesis) and maintenance of LSC function.

Most commonly, LESC deficiency is often caused by acquired factors. There are acquired causes, including ionizing and ultraviolet 
radiation, extensive microbial infection, contact lens (CL) wear, industrial accidents, after multiple resections of ocular surface 

Limbal stem cell deficiency: etiology and classification

Markers

ATP binding cassette transporter protein, in the limbal basal 
epithelium, 0.3-0.5% of cells in the limbal epithelium exhibit the 
side-population phenotype, to protect LSCs against oxidative 
stress induced by toxins

ABCG2 [25-27] 

a transcription factor, potential keratinocyte stem cell marker, 
DNp63α* is thought to be a highly expressed in the limbus during 
resting state, important for epithelial development

p63 [28-30]

CCAAT enhancer binding protein delta, a transcription factor, 
induces G0/G1 cell cycle arrest in mammary gland epithelial cells,C/EBPδ [30,32]

a repressor that to be expressed in the limbal epithelial side-
population, a Polycomb group repressor involved in the self-
renewal of various types of adult stem cell

Bmi1 [33]

a transmembrane receptor, maintaining cells in an 
undifferentiated state, localized to a small number of cells in the 
limbal epithelial basal layer, co-expressed with ABCG2

Notch 1 [34]
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tumors and Johnson syndrome (SJS) and Ocular cicatricial pemphigoid (OCP) that appears through dysfunction in mucous 
membrane [38-40]. In other term, LSCD divided into primary or secondary. The primary, which does not present any identifiable 
external factors, is supported by an insufficient microenvironment. Here, there are some dysfunction/poor regulation of stromal 
microenvironment of limbal epithelial stem cells: congenital erythrokeratoderma, keratitis with multiple endocrine deficiency 
and poor nutritional or cytokine supply, neurotrophic keratopathy, peripheral inflammation and sclerocornea [41,42]. Secondary 
LSCD is acquired by external factors. Some causes of Secondary LSCD have also been described in acquired LSCD [40-42].

Clinical features of LSCD: Conjunctivalization of the cornea associated with goblet cells, superficial and deep vascularization, 
chronic inflammation, persistent epithelial defects and scarring are the essential clinical signs of LSCD [43-45]. The most impor-
tant clinical trait of LSCD is conjunctivalization of the cornea that results in depletion of LESCs or loss of function by trauma or 
disease [46-48]. Tearing, reduced vision, chronic discomfort, chronic inflammation, stromal scarring, blepharospasm, photopho-
bia, neovascularization, and persistent epithelial defects (PEDs) are clinical features of conjunctivalization [2,46]. It depends on the 
size of limbal damage, which has a pattern of partial ingrowths (partial LSCD) or will affect the whole cornea (total LSCD) [49]. 
Also, a variance in the thickness and transparency of the corneal epithelium on slit lamp examination may be seen [50]. The cause 
of the LSCD often dictates whether the disease is affecting one eye or both (unilateral or bilateral) [6].

The aim of treatment for LSCD is to re-establish the physiologic and anatomic environment of the ocular surface by reconstruction 
of the corneal and conjunctival epithelium [36]. Some  techniques to replace limbal stem cells have been reported. Currently, the 
main clinical procedures that are performed include CLAU, SLET, KLAL, and cultivated limbal stem cell transplantation (CLET) 
[51]. The source of stem cell in unilateral disorders is the healthy contralateral eye [4,52]. Subsequently, transplantation of alloge-
neic limbal SCs that are dissected from cadaveric donors or living tissue-matched eyes to treat bilateral LSCD [53,54]. Limbal defi-
ciency in the donor eye is a potential serious risk to this procedure. Both of auto or allograft limbal tissues in transplantation have 
risks and benefits. Lid pathology, dry eye, uncontrolled systemic disorders and other different factors affect the achievement of LSC 
transplantation. Limbal transplantation is a definitive treatment for LSCD and may ameliorate the visual acuity of a patient with 
ocular surface disease [55]. The second strategy to treat LSCD is ex vivo expansion of limbal stem cells from a single small biopsy to 
transplant amniotic membrane (AMT), which forms the inner wall of the membranous sac surrounding the embryo during gesta-
tion. Anti-inflammatory and anti-angiogenic properties of amnion cause to use it in ocular surface reconstruction [56]. A number 
of clinical studies have shown transplantation of autologous, allogeneic limbal tissue or expanded cells in concomitance with AMT 
to promote the rapid re-epithelization required to restore corneas with LSCD [57-59]. In unilateral cases with total LSCD, trans-
plantation of ex vivo cultured LSCs from the human eye (CLET) or a CLAU is utilized (conjunctival limbal auto-explant). Allo-
explant limbal transplant performed in patients with bilateral total LSCD and it is extracted from a cadaveric or a living relative 
donor and then expanded in ex vivo. Recently, SLET has gained popularity in unilateral LSCD; in this technique, several pieces of 
one clock hour of contralateral healthy limbus are spread on a layer of AMT on the involved ocular surface [57-59].

Limbal stem cells transplantation

Clinical trials of limbal stem cells transplantation: Variation of culture techniques, case selection between studies, performance 
of both autologous, allogeneic transplants in studies, not including the corneal surface, visual improvement in some studies and 
different follow-up periods limit the interpretation of clinical trial results from cultured LSC therapy [60-65]. Over the years, many 
different methods have been developed. The first stem cell autograft using conjunctival-limbal-corneal epithelium harvested from 
the healthy fellow eyes of patients with unilateral chemical burns was reported by Barraquer in 1965 [60]. In 1997, Pellegrini et 
al. [61] reported the first experience of the clinical use of ex vivo cultured limbal epithelial stem cells (LESCs) for treating corneal 
LESC deficiency. In 2003,Sangwan and colleagues  published a study demonstrated reconstruction of the ocular surface in a case 
of severe bilateral partial LSCD with using autologous cultured conjunctival and limbal epithelium extracted from the healthy eye 
[62]. In addition, in 2006, they reported the clinical outcome of autologous cultivated limbal epithelial transplantation between 
March 2001 and May 2003.There were 88 eyes of 86 patients with limbal stem cell deficiency (LSCD). Sixty-four percent of patients 
were due to alkali burns and 69% eyes had total LSCD. Finally results shown 73.1% (57 eyes) were successful outcome with a stable 
ocular surface without conjunctivalization, 26.9% (21 eyes) had a considered failures and 10 patients were lost to follow-up [63]. 
The purpose of the study performed by Sangwan et al in 2011 was the efficacy of xeno-free autologous cell-based treatment with 
unilateral total limbal stem cell deficiency due to ocular surface burns treated between 2001 and 2010. A small limbal biopsy was 
taken from the healthy eye and the limbal epithelial cells were expanded ex vivo on human amniotic membrane using a xeno-free 
explant culture system. The resulting cultured epithelial monolayer and amniotic membrane substrate were transplanted on to the 
patient’s affected eye. A completely epithelized, avascular and clinically stable corneal surface was seen in142 of 200 (71%) eyes in 
this retrospective study. An improvement in visual acuity, without further surgical intervention, was seen in 60.5% of eyes. All do-
nor eyes remained healthy [64]. In 2005, Daya performed a study on  10 eyes of 10 patients with profound LSCD due to ectodermal 
dysplasia (3 eyes), Stevens-Johnson syndrome (3 eyes), chemical injury (2 eyes), thermal injury (1 eye), and rosacea blepharocon-
junctivitis (1 eye) to investigate the outcome of ex vivo expanded stem cell allograft for LSCD. Seventy percent of eyes (7 of 10) had 
improved parameters, including vascularization, conjunctivalization, inflammation, epithelial defect, photophobia, and pain and 
40% of eyes (4 cases of 7) had improved visual acuity [66]. A study by Nakamuraet al (2006) investigated 9 eyes from 9 patients 
with total limbal stem cell deficiency (2 eyes with Stevens-Johnson syndrome, 1 with chemical injury, 1 with ocular cicatricial pem-
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phigoid, 1 with Salzmann corneal dystrophy, 1 with aniridia, 1 with graft-versus-host disease, and 2 with idiopathic ocular surface 
disease). The authors compared autologous serum (AS)-derived corneal epithelial equivalents with those derived from fetal bovine 
serum (FBS)-supplemented medium, so cultivated corneal epithelial transplantation can be used for the treatment of severe ocular 
surface disease. Allologous (7 cases) and autogenic (2 cases) AS-derived cultivated corneal epithelial equivalents were transplanted 
onto the ocular surface. During the follow-up period, the corneal surface of all patients remained stable and transparent, without 
significant complications and visual acuity improvement was seen in all eyes [67]. In 2006, Javadi et al. published a more detailed 
report on the early results of transplantation of autologous limbal stem cells cultivated on amniotic membrane (AM) in four eyes 
of 4 patients with total unilateral LSCD. After 5-13-month follow-up, visual acuity, corneal opacification, and vascularization im-
proved in all cases [68]. In 2010, they performed keratolimbal allograft (KLAL) for treatment of 21 eyes of 20 patients with total 
LSCD and adequate tear production were included. Mean visual acuity improved. Graft survival rate was 61.9% at 1 year and 31% 
at 20 months [69]. Alex J. Shortt used a novel culture system without 3T3 feeder cells to determine the outcome of ex vivo cultured 
LESC transplantation. Allogeneic (7 eyes) and autologous (3 eyes) corneal LESCs were cultured on human amniotic membrane. 
Tissue was transplanted to the recipient eye after superficial keratectomy. The success rate was 60% with a successful outcome ex-
perienced [70]. In 2014, Vazirani with the cooperation of Sangwan performed a study on seventy eyes of 70 patients with unilateral, 
partial LSCD and reported the outcomes of autologous cultivated limbal epithelial transplantation using the healthy part of the af-
fected eye or the fellow eye as a source of  limbal stem cells in patients. In 36 eyes, the limbal biopsy was harvested from the healthy 
fellow eye (contralateral group) and in the remaining eyes from the healthy part of the limbus of the same eye (ipsilateral group). 
Clinical success was achieved in 70.59% of eyes in the ipsilateral group and 75% of eyes in the contralateral group. Outcomes are 
similar irrespective of whether the limbal biopsy is taken from the healthy part of the ipsilateral eye or the contralateral eye [65].

Stem cell therapy for retinal degenerative diseases
Introduction: Every year many people suffer from visual disturbance or even blindness caused by retinal detachment.  The 
retina is a part of the central nervous system (CNS) consisting of neuronal cells (photoreceptors, horizontal cells, amacrine cells, 
bipolar cells and retinal ganglion cells) and glial cells (Müller glia is a specialized type of glial cell only present in the retina) [71]. 
Epidemiologists have found that damage to the retina can occur the entire age spectrum. For instance, the pediatric and young 
adult populations are affected by retinitis pigmentosa (RP) and middle-aged adults are affected by diabetic retinopathy (DR), and 
the elderly are affected by age related macular degeneration (AMD) [72,73]. Retinal neurodegenerative disorders divided into 
diseases affecting the inner retina, example glaucoma and can affect both bipolar cells and retinal ganglion cells (RGCs) [74]. Those 
affecting the outer retina often leads to the death of the photoreceptors. Retinal progenitor cells were identified as possible cell 
candidates for an accepted potential treatment strategy for retinal injury. These cells represent many of the properties associated 
with stem cells: 1) proliferation and expression of Nestin, a neuroectodermal stem cell marker, 2) multipotential property, and 3) 
self-renewal capacity [75]. Photoreceptors, intermediate neurons and Muller glia are differentiated in vitro to form sphere colonies 
of cell. Progenitor cells find themselves in an inhibitory environment and this is the result of the failure of retinal progenitor cells 
to renew retinal cells in the postnatal period [76]. Muller glia cells play a key role in the generation of multipotent precursor cells 
from embryonic retinal cells and these have the potential to become neurogenic retinal progenitor cells [77]. In retinal disease such 
as retinitis pigmentosa and age-related macular degeneration can use retinal progenitor cells for transplantation in the adult retina. 
Main sources of progenitor cells are: embryo, the bone marrow, neuronal genesis region, and eye (ciliary body epithelium, the iris, 
the ciliary marginal zone, and retina) [78].

Stem cells in retina: The ability of donor cells migrate into the desired location, to be alive after transplantation, and to differentiate 
into retinal cells are the three causes successful of stem cell therapy. Recent researches have shown embryonic SC (ESC), adult SC 
and induced pluripotent SC (iPSC) are three main types of stem cells being considered as the potential source for retinal repair and 
regeneration. These eye-derived PCs have the potential to differentiate into retina-specific cells in an allowable environment. IPSCs 
are somatic cells, which can be genetically reprogrammed to become ESC-like with the risk of tumor genesis. A sub-population of 
Muller glia with SC characteristics has been founded in the adult human retina. The aim of transplantation of functional retinal 
cells or stem cells is to restore vision by repopulating the degenerated retina via rescuing retinal neurons from further degeneration 
[79-81].

Target cell types for retinal degeneration treatment
Retinal pigmented epithelial cells (RPE): Human embryonic stem cells (HESCs) and human induced pluripotent stem cells 
(hiPSCs) can be differentiated into all retinal cell types [82] RPE plays a key role in maintenance of neural retinal function that can 
suggest retinal degeneration can be treated with sub-retinal injections of RPE cells. The improvement in stem cell differentiation 
techniques can make pluripotent stem cells differentiation into RPE cells. Extended monolayers of RPE can be isolated and 
transferred to a variety of substrates [83-85].

Photoreceptor: The retina includes highly specialized photoreceptors that capture the photons and transduce them into electrical 
signals. The ability to produce true multipotent neuroretinal progenitor cells (NRPCs) and being renewable are distinct advantages 
of human pluripotent stem cells (HPSCs) as sources of donor neuroretinal cell types [86]

Clinical studies: Recent studies on stem cell therapy in retinal diseases are summarized in Table 2.
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Table 2: Recent studies on stem cell therapy in retinal diseases. AMD: age related macular degeneration, RPE: retinal 
pigment epithelium, hESC: human embryonic stem cell, RCS: Royal College of Surgeons

Discussion 
The focus of this review was principal stem cells in the eye especially limbal stem cells. One of the most important ocular stem cells 
is limbal stem cell that retains in an undifferentiated state and exists in an optimal microenvironment or “niche”. The importance of 
limbal stem cells in maintaining the corneal epithelium throughout life has long been recognized. Moreover, stem cells in the retina 
as possible edge of the science, have been suggested for treatment of the retinal degeneration, which generally results in constant 

OutcomesRetina diseaseStudy  

2003

Postoperative vision with a 2-line increase in three 
patientsAMD (clinical)Van Meurs JC et al. [87]

2004

TreatmentRetinal degenerationOtani A et al. [88]

2005

Survive and rescue photoreceptors using graftsPhotoreceptor lossWang S et al. [89]

2006

Improvement in visual performance was 100%Retinal dystrophyLund RD et al. [90]

2007

Autologous RPE transplantation restores visionneovascular AMD (clinical)MacLaren RE et al. [91]

2008

Rod photoreceptor, bipolar and amacrine cell 
markers were expressed by grafted cellsRetinal degenerationCastanheira P et al. [92]

2009

iPSCs differentiate into functional RPEsRetinitis pigmentosa and 
AMDBuchholz DE et al. [84]

The cells sustained visual function 
and   photoreceptor integrityMacular degenerationLu B et al. [93]

2010

BM-MSCs deliver neurotrophic factors and 
neuroprotectionGlaucomaLevkovitch-Verbin H et al. [94]

Photoreceptors were present up to 12 months  
post-transplantationNeural retina repairWest EL et al. [95]

2011

Maintenance of visual acuityAMD Takeuchi K et al. [96]

Autologous RPE sheet,  Maintenance of  visual 
acuityAMDFalkner-Radler et al. [97]

2012

Protection of retina in macular degeneration  by 
replacement of the structural and trophic  support 
provided by retinal pigment epithelium

AMDSchwartz et al. [98]

Successful transplantation of  hESC- RPE 
graft patchRCS ratHu Y et al. [99]

2013

Neural activity similar to native photoreceptorsAMD and retiniti 
pigmentosaK Homma et al. [100]

HiPSCs less efficient in comparison with hESCretinitis pigmentosaBuchholz D et al. [101]

2014

RPE cell sheets generated without any artificial  
cell sheets and performed subretinal injection into 
RCS

AMDHiroyuki Kamao et al. [102]

rescue of retinal function and significantly  
delayed photoreceptor degenerationretinal dystrophyAdi Tzameret et al. [103]

2015

hESCs and their differentiation maintaining 
into RPE using Xeno-Free derivation (a novel, 
synthetic substrate)

AMDBritney O et al. [104]

increase in visual acuityAMD and Stargardt’s 
macular dystrophyChen ZG et al. [105]



Journal of Stem Cells and Clinical Practice
 

6

Annex Publishers | www.annexpublishers.com                    
 

Volume 1 | Issue 1

visual disturbance or even blindness. However, the limbal stem cells have been studied deeply during previous days. When the 
patient is labeled as LSCD according to the clinical features, one of above-mentioned procedures could be done. In bilateral cases a 
KLAL or CLET procedure may be needed. In unilateral involvement, a CLAU or SLET could be savior. It seems that we need more 
studies in the field of ophthalmic stem cells

1. Pellegrini G, De Luca M, Arsenijevic Y (2007) Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 18: 805-18.
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