Top Links

Articles Related to Foresnsic

Recent Developments in Human Odor Detection Technologies

Human odor detection technologies have drawn attention due to the wide possibility of potential applications they open up in areas such as biometrics, criminal investigation and forensics, search for survivors under rubble, and security checkpoint screening. Gas chromatography/mass spectrometry (GC/MS) has been the most successful and powerful analytical approach developed to date for human odor analysis, and hundreds of human odorants have been identified using this tool.
View complete article: PDF  |  Full-text

Electronic-nose Applications in Forensic Science and for Analysis of Volatile Biomarkers in the Human Breath

The application of electronic-nose (E-nose) technologies in forensic science is a recent new development following a long history of progress in the development of diverse applications in the related biomedical and pharmaceutical fields. Data from forensic analyses must satisfy the needs and requirements of both the scientific and legal communities. The type of data collected from electronic-nose devices provides a means of identifying specific types of information about the chemical nature of evidentiary objects and samples under investigation using aroma signature profiles of complex gaseous mixtures containing volatile organic compounds (VOCs) released from manufactured products and parts of the human body. E-nose analyses also provide useful qualitative information about the physicochemical characteristics and metabolic conditions of human subjects without the need for time-consuming analyses to identify all chemical components in human-derived volatile mixtures.
View complete article: PDF  |  Full-text

Analysis of Sweat Simulant Mixtures using Multiplexed Arrays of DNA-Carbon Nanotube Vapor Sensors

Carbon nanotube (NT) based electronic vapor sensors were tested against synthetic sweat solutions, consisting of 13 volatile organic compounds (VOCs) in saline, in order to probe the device ability to analyze and differentiate vapors derived from complex biological samples.
View complete article: PDF  |  Full-text

Characteristic Human Scent Compounds Trapped on Natural and Synthetic Fabrics as analyzed by SPME-GC/MS

The collection of human odor volatiles is of interest to forensic applications as a path to investigate canine scent discriminations in legal investigations. A study using a selected array of previously identified human odor compounds has been conducted to determine the retention and release capabilities of five (5) natural and synthetic fabric types, cotton (mercerized fabric and gauze matrix), polyester, rayon and wool.
View complete article: PDF  |  Full-text


Submit Manuscript


Open Access Journals

View All Journals