Top Links

Articles Related to Materials

Characterization of the Resin Luting Materials: Percentage, Morphology and Mechanical Properties

The purpose of this study was: 1) to determine the percentage of fillers by weight of the investigated materials by thermogravimetric analysis (TGA), to examine their fillers morphology using scanning electron microscopy (SEM), 2) and to evaluate the mechanical properties of these materials.
View complete article: PDF  |  Full-text

Health Food and Traditional Chinese Medicine in China

Like a drug for a purpose of treating or preventing a disease, a health food has to be scientifically evaluation and officially approved before it legally is marketed in China.
View complete article: PDF  |  Full-text

A Non-Contact Passive Approach for the Effective Collection of Target Explosive Volatiles for Canine Training Aid Development

The use of real explosive materials for canine training involves inherent dangers, toxicity risks exposure, and often limited availability of the training material all of which may affect the reliable training of canine teams. For this reason, the development of a training aid suitable for daily operations is beneficial to provide safe and effective explosive detection training that can provide for enhanced detection capabilities.
View complete article: PDF  |  Full-text

Serum Haptoglobin Responses following Rumenotomy in the Sahel Goat

Fifteen Sahel goats were randomly allocated into three groups A, B and C to evaluate Serum Haptoglobin (Hp) profiles following rumenotomy as markers of surgical stress using Quantitative ELISA.
View complete article: PDF  |  Full-text

Characterization of Screen-Printed Nickel Oxide Electrodes for p-type Dye-Sensitized Solar Cells

Mesoporous NiO films obtained via screen-printing deposition of a newly formulated paste containing preformed NiO-nanospheres have been employed as nanostructured photocathodes of p-type dye-sensitized solar cells (p-DSCs).
View complete article: PDF  |  Full-text

UVC-Shielding by Nano-TiO2/PMMA Composite: A Chemical Approach

A translucent UV protecting poly (methyl methacrylate) (PMMA)/TiO2 nanocomposite has been fabricated using anatase TiO2 nanoparticles by solution method. The myristic acid capped titania nanoparticles were synthesized via a simple sol-gel method, involving hydrolysis of titanium tetra isopropoxide (TTIP).
View complete article: PDF  |  Full-text

Review on Pharmacological Activities of the Peptides from Scorpion Buthus Martensii Karsch

In China, the scorpion Buthus martensii Karsch is used as functional food and medicinal materials. The scorpion, scorpion venoms and their extracts are effective in treating a variety of nervous system diseases such as epilepsy, apoplexy pains and facial paralysis.
View complete article: PDF  |  Full-text

Complete Green Synthesis of Gold Nanoparticles using Laser Ablation in Deionized Water Containing Chitosan and Starch

In this paper we report our results on the green synthesis of nontoxic, stable, and small size gold nanoparticle suspensions. We used the single and two-beam laser to ablate a gold target submerged in deionized water containing chitosan or starch as the stabilizing agent. Since both chitosan and starch are biodegradable and biocompatible, use of these natural polymers for gold nanoparticle protection and stabilization does not introduce any environmental toxicity or biological hazards.
View complete article: PDF  |  Full-text

Flexural Strength of Provisional Crown and Fixed Partial Denture Resins both with and without Reinforced Fiber

Fabrication of provisional restorations is an important procedure in fixed prosthodontics. Provisional restorations must satisfy the requirements of pulpal protection, positional stability, occlusal function, ability to be cleansed; margin accuracy, wear resistance, strength, and esthetics.
View complete article: PDF  |  Full-text

The Ni(II) Complex of 2-Hydroxy-Pyridine-N-Oxide 2-Isothionate: Synthesis, Characterization, Biological Studies, and X-ray Crystal Structures using (1) Cu Kα Data and (2) Synchrotron Data

C12H20N6NiO6S2 or NiL2(SCN)2](NH4)2.2H2O, where L is 2-hydroxy-pyridine-N-oxide, has been prepared and characterized using elemental analyses, IR, UV and visible spectrometry, magnetic moment measurements, thermal analyses and single crystal X-ray analyis. The results indicate that the complex reacts as a bidentate ligand and is bound to the metal ion via the two oxygen atoms of the ligand (HL).
View complete article: PDF  |  Full-text  | Digital
 
 

Polymer Nanocomposite: A Promising Flame Retardant

Fire has long been a major hazard in our lives. From the fire protection engineering point of view, most fire hazards could be controlled when we consider all contribution factors, such as ignitability, flame spread, materials flammability, and fire suppression.
View complete article: PDF  |  Full-text  | Digital
 
 

Application of Nanotechnology in Photovoltaic

Nanotechnology mainly consists of the processing, separation, consolidation, and deformation of materials by one atom or by one molecule. It is an applied research of materials and devices operated at nanometer scale.
View complete article: PDF  |  Full-text  | Digital
 
 

Sustainable Nanomaterials: A Greener Future Avenue?

The field of nanoscience has experienced a staggering number of advances in recent years with regards to a wide range of disciplines including physics, chemistry, materials science, biology and medicine.
View complete article: PDF  |  Full-text  | Digital
 
 

Estimation of the Thermodynamics of Ionic Materials

Thermodynamics provides the primary information regarding the feasibility of synthesis and stability of materials, principally through the quantities: heat capacity, Cp; entropy, S; enthalpy of formation, ΔfH; the Gibbs energy of formation, ΔfG, andamplified by lattice energy, ΔLU.
View complete article: PDF  |  Full-text  | Digital
 
 

Polymeric Nano-Fibers and Modified Nano-Fibers Assembly in 3D Network for Different Potential Applications

Polymeric nano-fiber based materials and their application is one of the research areas in materials science and nanotechnology. Nano-fibrous materials are receiving extensive research interest for applications in diverse fields as biosensors, optical and chemical sensors, stimuli-responsive or "smart" materials, bioreactors, drug delivery carriers, etc.
View complete article: PDF  |  Full-text  | Digital
 
 

Ordered Growth of Anodic Aluminum Oxide in Galvanostatic and Galvanostatic-Potentiostatic Modes

The results are presented of obtaining anodic aluminum oxide with an ordered pore arrangement by employing two anodizing modes - galvanostatic mode and combined (galvanostatic + potentiostatic) mode, at high values of the current density and voltage. Use has been made of an oxalate electrolyte and a complex electrolyte comprising oxalic acid and phosphoric acid. Scanning electron microscopy has been used to investigate the surface morphology of the barrier and porous layers and to determine pore sizes and inter-pore distance.
View complete article: PDF  |  Full-text

Anodic Porous Alumina Array for Cyanine Fluorophore Cy3 Confinement

Self-organized anodic porous alumina films with hexagonal pore lattice have attracted a considerable attention for biological arrays and confinement of various organic probes dyes in solutions. A molecular structure with axial symmetry in bis-heterocyclic indole chains and conjugate system, such as cyanine fluorophore Cy3 dye, was investigated here with respect to its fluorescence when loaded in the anodic alumina pores.
View complete article: PDF  |  Full-text

Anodizing for Design and Function

Two basic reactions occur during the anodizing of aluminum: 1) the aluminum is consumed and 2) an oxide grows. By accepting this statement as true, the anodizing process can be viewed as a corrosion process, and anodizing can be modeled using the Tafel Equation. Anodizing process parameters of electrolyte chemistry and concentration, temperature, aluminum substrate resistance and current density are presented as they relate to the Tafel Equation and how they impact the anodic aluminum oxide structure and properties. Understanding this relationship is consequent in making anodizing an engineering process, one that enables tuning the structure such that it yields distinct characteristics to fulfill design and application requirements.
View complete article: PDF  |  Full-text

The Effects of the Film Thickness and Roughness in the Anodization Process of Very Thin Aluminum Films

The anodization of aluminum foils having micrometer thickness is a common process and results in hexagonally self-ordered alumina membranes. However, anodic aluminum oxide (AAO) membranes fabricated from nanometer-thin films present new challenges to the anodization process, since aluminum films adheres poorly on supporting substrates and the smoothness of the film is highly related to the kind of substrate.
View complete article: PDF  |  Full-text

Anodic Oxidation of Titanium in Sulphuric Acid and Phosphoric Acid Electrolytes

Anodisation of pure titanium has been carried out in sulphuric and in phosphoric acid solutions at potentials ranging from 50 to 150V. The SEM and AFM morphological analysis indicates that, within this potential range, oxidation in sulphuric acid solution produces better developed mesoporous oxide layers.
View complete article: PDF  |  Full-text

Fabrication of Ordered Arrays of Anodic Aluminum Oxide Pores with Interpore Distance Smaller than the Pitch of Nano-pits formed by Ion Beam Etching

We investigated a method for preparation of ordered nanopore arrays with the interpore distance of 60 nm by guided self-organization of anodic aluminum oxide with a prepatterned array of pits in the starting Al film.
View complete article: PDF  |  Full-text

Preparation of Large Area Anodic Alumina Membranes and their Application to Thin Film Fuel Cell

The design of an electrochemical reactor for the preparation of self-supported comparatively thin (up to 10 μm) and large area (up to 50 cm2) anodic alumina membranes is described allowing growth of porous alumina at high applied potential (up to 150 V) without burning.
View complete article: PDF  |  Full-text

Fabrication of Vertical Cu2ZnSnS4 Nanowire Arrays by Two-Step Electroplating Method into Anodic Aluminum Oxide Template

Vertical Cu2ZnSnS4 (CZTS) nanowire arrays have been synthesized via two-step electroplating method into anodized aluminum oxide template. For deposition of CZTS nanowires, anodized aluminum oxide (AAO) was used as the growth mask for the growth of the nanowires. AAO templates with hole sizes of 70 nm in diameter were used in the experiments.
View complete article: PDF  |  Full-text

Fabrication and Luminescence of Anodic Alumina with Incorporated Vanadyl Citrate Chelate Anions

Anodic aluminum oxide doped with vanadyl citrate chelate complex anions was formed by a two-step self-organized anodization in 2 wt. % sulfuric acid containing 0.04 M V2O5 and 0.08 M citric acid at voltage range 13-23 V, and at 0 and 15 oC. The combination of two temperatures and at least four voltages (depending on the applied temperature) was applied as the operating conditions of anodization.
View complete article: PDF  |  Full-text

Synthesis of BaTiO3 Nanowires via Anodic Aluminum Oxide Template Method Assisted by Vacuum-and-Drop Loading

In this paper, we report on the synthesis of BaTiO3 nanowires via the anodic aluminum oxide template method. To fill in the precursors of BaTiO3 into anodic aluminum oxide templates, the vacuum and drop loading method developed in our previous study was used. Ba(CH3COO)2 (barium acetate) and C12H28O4Ti (tetraisopropyl orthotitanate) were used as Ba and Ti sources, respectively. Anodic aluminum oxide membranes with the through-hole diameter of ~200 nm were used as the template for BaTiO3 nanowires.
View complete article: PDF  |  Full-text


Editorial Board Members Related to Materials

Ren-Ke Li

Professor
Laboratory Medicine and Pathobiology
University of Toronto
Canada

Hong Ma

Associate Professor
Department of Materials Science and Engineering
University of Washington
United States

Joseph J. BelBruno

Professor
Department of Chemistry
Dartmouth College
United States

Luisa Amelia Dempere

Major Analytical Instrumentation Center
United States

BENJAMIN GODDER

Clinical Associate Professor
Department of cariology and comprehensive care
New York University
United States

ZHANG XUE-HONG

Professor and Executive Dean
School of Life Sciences and Biotechnology
Shanghai Jiao Tong University
China

MOHAMED ABDELMAGEED AWAD

Associate Professor & Consultant
Fixed Prosthodontic Department
Tanta University
Egypt

MOHAMED FARAG AYAD

Professor
Department of Oral and Maxillofacial Rehabilitation
King Abdulaziz University
Saudi Arabia

Hongxia Hao

Lecturer
Department of Chemistry
University of Toronto
Canada

Tony Jun Huang

Professor
Department of Engineering Science and Mechanics
Pennsylvania State University
United States
Submit Manuscript