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Abstract

The win ratio is an estimate of the treatment effect used in situations where composite endpoints are employed and where
the events that make up the composite endpoint can be prioritized. We study the win ratio in the context of oncology trials
with the events of progression and death. We then propose two new measures related to the win ratio, called the continu-
ous win ratio and continuous win difference. We define the continuous win ratio to be the ratio of the length of time the
treatment arm wins by when it wins to the length of time it loses by when it loses, while the continuous win difference is
the difference between these two quantities scaled by the number of pairs. The win ratio, continuous win ratio, continuous
win difference, net benefit, and win odds are compared using simulations in the setting where death is considered the
highest-priority or primary event, and progression is considered the secondary event, and when the priorities are
switched. We also estimate the restricted mean survival time (RMST) difference and ratio and pairwise win time for
various scenarios. Using exponential and Weibull distributions to simulate times to progression and death, we consider
both the proportional and non-proportional hazards situations. Finally, we present an oncology case study to estimate the
win ratio, continuous win ratio, continuous win difference, net benefit, win odds, RMST difference and ratio and pairwise
win time. The continuous win ratio, continuous win difference and RMST difference and pairwise win time are measures
of how much benefit in terms of time the study drug provides to the patient compared to the control, and thus may help
doctors and payers better understand the effect of the study drug.

Keywords: Win Ratio; Continuous Win Ratio; Continuous Win Difference; Win Odds; Net Benefit; RMST Difference and

Ratio; Pairwise Win Time
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Introduction

Progression free survival (PFS) is a common endpoint in late phase oncology clinical trials. It is a composite endpoint of pro-
gression or death (defined as the earliest of progression (PD) or death). The log-rank test is generally used to determine
whether the progression-free survival curves of the treatment arm and the control arm are different. The log rank test is opti-
mal under the proportional hazards (PH) assumption, which means that the hazard ratio (HR) for treatment on PFS does not

change over time.

The win ratio (WR) is an alternate estimate of the treatment effect in situations where composite endpoints are employed. The
win ratio estimates the ratio of the probability that a randomly chosen treatment arm patient has a better outcome (“winning”)
than a randomly chosen control arm patient, to the probability that the control arm patient has a winning outcome over the
treatment arm patient. In the win ratio approach, the events that make up the composite endpoint can be prioritized and evalu-
ated sequentially from highest to lowest priority to determine the winner. Under PH, the win ratio is equal to the reciprocal of

the HR for a time to event endpoint with a single event [1, 2].

In this paper, we consider the win ratio in the context of oncology trials with the events of progression and death. We then pro-
pose two new measures based on the win ratio, called the continuous win ratio (CWR) and continuous win difference (CWD).
The rationale for these new measures is to not only address the likelihood of treatment arm patients winning, but also to quanti-
fy the treatment benefit in terms of time, considering progression or death as the primary event. The CWR provides a ratio of
how much time the treatment arm gains when it wins to how much time it loses when it loses. The continuous win difference is
the difference between how much time the treatment arm gains when it wins to how much time it loses when it loses, scaled by
the number of pairs. The win ratio, the CWR and CWD are compared in the setting where death is considered the highest-pri-
ority or primary event, and progression is considered the secondary event, and in the setting where progression is considered

the primary event and death is the secondary event (Table 1).

Table 1: Pair Outcomes with Two Endpoints (Adapted from [3])

Endpoint with higher priority e.g. Death | Endpoint with lower priority e.g. Progression | Pair Outcome
Wins Ignored Wins
Loses Ignored Loses
Uninformative/Neutral Wins Wins
Uninformative/Neutral Loses Loses
Uninformative/Neutral Uninformative/Neutral Tied

We also calculate the established measures of net benefit, win odds, restricted mean survival time (RMST) ratio and RMST dif-
ference and a recently proposed measure called the pairwise win time to put our new measures in context. The RMST differ-
ence, CWD and pairwise win time have the same units (months or days) and provide measures of how much time is gained (or
lost) from the treatment compared to the control. The RMST difference has been proposed as an appropriate measure of the
treatment effect when the PH assumption is not met [4]. We propose using the CWR and CWD as complementary measures to
the WR, win odds and net benefit to more fully understand the treatment effect. The win ratio, CWR, CWD, net benefit, win
odds, RMST ratio and RMST difference and pairwise win time are defined in Table 2.
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Table 2: Definitions of Win Ratio, Continuous Win Ratio, Continuous Win Difference and RMST Difference and Ratio

Parameter Definition

If a pair of patients is randomly picked, where one is from the treatment arm and the
Win Ratio (WR) other is from the control arm, the win ratio is the ratio of the probability that a patient
from the treatment arm wins to that a patient in the control arm wins.

Continuous Win | The ratio of the length of time the treatment arm wins by when it wins to the length of

Ratio (CWR) time it loses by when it loses.
Continuous Win The difference between the length of time the treatment arm wins by when it wins to
Difference (CWD) the length of time it loses by when it loses, scaled by the number of pairs.
Net Benefit The difference in win proportions.

The odds of win proportions where a tie results in a half win being assigned to the

Win Odds treatment arm and a half win to the control arm.

The absolute gain or loss in event-free survival time due to treatment, where event
. times are restricted to be less than or equal to time 1. The RMST values are calculated
RMST Difference ) . 17° ; _ i
up to a common time T, which is the minimum of the largest observation times in the
control and treatment arms.

The ratio of the area under the Kaplan-Meier curve for the treatment arm to the

RMST Ratio .
control arm, where the areas are calculated up to time t.

The pairwise average of the win time differences. A win time difference is the excess
time that the patient in the treatment arm is in a more favorable (or unfavorable) state
Pairwise Win time | than the patient in the control arm in each pair over the effective common follow-up
time (maximum of death times if both patients in the pair die and minimum of

censoring time(s), if either patient is censored).

The WR, CWR, CWD, net benefit, win odds, RMST difference and ratio and pairwise win time were compared via the follow-

ing four simulation scenarios:
1) With exponential distributions where the hazard ratios for progression and death are the same (PH assumption holds);

2) With exponential distributions where the hazard ratios for progression and death are in opposing directions (PH assump-
tion holds);

3) With Weibull distributions with the same shape parameter and where the hazard ratios for progression and death are the

same (PH assumption holds);

4) With Weibull distributions with different shape parameters for the control and treatment arms (PH assumption is violated).

The fourth scenario is used to evaluate the impact of the critical PH assumption.

Finally, we use oncology trial data and estimate the win ratio, CWR, CWD, net benefit, and win odds in the setting where death
is considered the highest-priority event, and progression is considered a secondary event, and if the priority is reversed. In addi-
tion, we estimate the RMST difference and ratio and pairwise win time. Further, we provide the inverse probability of censor-
ing weighted (IPCW) WR to account for the occurrence of right-censoring in the time to event data (5), as well as the IPCW-ad-
justed CWR and CWD for these data.
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2. Method: Estimating the WR, CWR, CWD, Win Odds, Net Benefit, RMST Ratio and
RMST Difference

2.1 WR, CWR and CWD - unmatched analyses

Expanding on the WR algorithm in Pocock et al. [6], the derivation of the WR, CWR and CWD in the cancer setting with
death as the primary event and progression as the secondary event are presented in Table 3. Without loss of generality, we will

use months as the unit of time.

Table 3: Algorithm for the derivation of WR, net benefit, CWR and CWD

Description Algorithm consideration

Each patient in the control arm is paired with every patient in the treatment arm. Thus,
Pairing if there are n_patients in the control arm and n patients in the treatment arm, there are

N =n *n pairs.
P c t

Each one-to-one pair of patients is classified into one of five categories:

a) The treatment arm patient dies first (including if the control arm patient
does not die and is followed longer than the treatment arm patient); we
calculate the difference in months between the control arm patient’s
death date or censoring date and the treatment arm patient’s death date;

b) The control arm patient dies first (including if the treatment arm patient
does not die and is followed longer than the control arm patient); we
calculate the difference in months between the treatment arm patient’s
death or censoring date and the control arm patient’s death date;

For cases ¢), d) and e), it is assumed death cannot be used to assess a win or a

loss between the pair of patients being compared.

c) The treatment arm patient progresses first (including if the control arm
patient does not progress and is followed longer than the treatment arm
patient); we calculate the difference between the treatment arm patient’s
PFS date and the control arm patient’s progression date;

d) The control arm patient progresses first (including if the treatment arm
patient does not progress and is followed longer than the control arm
patient); we calculate the difference between the control arm patient’s PFS
date and the treatment arm patient’s progression date;

e) None of the above, and the pair produces a tie. We assign 0 months to this
pair.

Based on death as the primary event and progression as the secondary event in our
example, categories ¢) and d) are considered only if it is not known who dies first.
Category e) contains patients who had neither death nor progression but will also
include pairs where one of the patients had an event but the other patient’s follow-up
time was shorter and hence it could not be decided which arm won.

Pairwise
comparison for win
vs. loss

We denote the numbers of pairs in categories a), b), ), d), and e), respectively by N, N,

N, N, and N. These numbers are used to quantify the treatment effect: N, + N = N the

Win ratio number of ‘winners’,and N + N = N is the number of ‘losers’. The win ratio treatment
effect is then WR=N /N .A win ratio of 2 implies that treatment arm wins in twice as

many pairs as it loses. It can also be interpreted as a patient in the treatment arm is
100% more likely to win than a patient in the control arm.
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The trial’s composite endpoint results are summarized by M, M, M, M , and M, which
stand for the sums of the number of months from pairs in categories a), b), ¢), d), and
e), respectively. M, + M = M is the number of months of advantage for ‘winners’.
Similarly, M + M_= M is the number of months of disadvantage for the ‘losers’.
CWR=M /M , the ‘continuous win ratio’, provides a ratio of how much time the
treatment gains in the pairs where the treatment arm does better than the control arm

Continuous win | to how much time the treatment loses in the pairs where the treatment arm does worse
ratio/continuous | than the control arm. A CWR of 2 can be interpreted as the treatment winning by twice
win difference as much time as it loses. CWD=(M -M )/N, is the ‘continuous win difference’ (N is the

total number of pairs). This measure provides an absolute difference of how much time
the treatment gains in the pairs where the treatment arm does better than the control
arm to how much time the treatment loses in the pairs where the treatment arm does
worse than the control arm. A CWD of 2 months can be interpreted as winning two
months more from being in the treatment arm than in the control arm. This represents
the benefit (or loss) of treatment in the time to event, comparing a treated subject to a
control subject.

In Table 3, in cases a) — d) when one of the patients in the pair is right censored, then the time advantage or deficit for the treat-
ed arm patient cannot be exactly specified (for e.g. if the first patient in the pair dies at day 50 and the second patient in the pair
is alive and censored at day 70, the difference of 20 days is the minimum value of the difference). In our basic approach to calcu-
late the CWR and CWD, which we evaluate in simulation studies, we take the time differences in these cases by treating the cen-
soring times as if these were event times. This leads to minimizing the time advantage or deficit for such pairs. As with the basic
unmatched win ratio calculations which are challenged by a high proportion of ties with a high proportion of right censored ob-
servations, so are the basic unmatched CWR and CWD calculations. We evaluate the impact on power as right censoring in-

creases on the CWR and CWD for the four simulation scenarios we consider.

Note that an IPCW adjusted WR, with weights based on the Kaplan-Meier curve of the time-to-event data, can be calculated
when the percentage of ties is high. Such an estimate has been shown to be asymptotically unbiased [5]. Since censoring has
similar effects on the CWD and CWR, adjusting by such weights is anticipated to reduce the bias in these estimates when right
censoring increases. In light of this, for our example with data from an oncology trial, we derive an IPCW-adjusted win ratio,
CWR and CWD to provide estimates and associated Cls, which are generally expected to be wider than those for the unadjust-
ed case. However, the IPCW-adjusted CWR and CWD have not been shown to be unbiased estimators under independent cen-

soring and need further exploration to establish their properties.

In our derivation of the CWR and CWD, time advantages in the time to death and progression are not differentiated. This is
similar to how the WR, net-benefit and win odds are derived; once the events are prioritized (say death), we prioritize the time

advantage for death over the time advantage for progression.
Further details on the algorithm for deriving the CWR and CWD can be found in Appendix Table 2.

For the WR, CWR, CWD, and other measures, we recommend using bootstrapping to calculate the 95% Confidence Interval

(CI) with a single data set, as done in the analysis of the oncology data set in the results section.

2.2 Net Benefit and Win Odds

The net benefit measures the difference in win proportions (N,, - N )/N,, N, is the number of pairs, and the win odds is defined
as an odds of win proportions where a tie results in a half win being assigned to the treatment arm and a half win to the control
arm ([N,,+0.5*N,J/[N;+0.5*N,], N, is the number of ties) [7, 8]. The win ratio, net benefit and win odds test the same hypothesis

of no difference in proportion of wins and result in similar p-values.
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2. 3 RMST Difference, RMST Ratio, RMT-IF/Pairwise Win time

The RMST difference is the absolute gain or loss in the event-free survival time due to the treatment, where the event times are
restricted to be less than or equal to time 1. The RMST values for each simulation are calculated up to a common time T, which is
the minimum of the largest observation times in the two arms i.e. control and treatment arm. Two more recent references [9, 10]
introduce a concept called restricted mean time in favour of treatment (RMT-IF), which considers multiple events or states such
as cancer progression, metastasis, and death in determining if the treatment arm performs better than the control arm. RMT-IF
is defined as the net average time those in the study drug arm spend in a more favourable state than those in the control arm over
a pre-specified time window. RMT-IF reduces to the RMST difference if there is only one event e.g. death. Here, we consider the
RMST difference for PES as well as another measure similar to RMT-IF called the pairwise win time ([11] and defined in Table
2) and compare them with the continuous win difference, since they all have the same units of time. The RMST ratio is the ratio
of the area under the Kaplan-Meier curve for the treatment arm to that under the control arm, where the area is calculated up to

a common time T.

3. Simulations

A total of four scenarios are included and described in Table 4. For each scenario, we simulate 1000 trials with time-to-event da-
ta for 100 patients in the control arm and 100 patients in the treatment arm. Weibull or exponential distributions, with the ex-
ponential distribution being a special case of the Weibull distribution with a shape parameter value of 1, are used to indepen-
dently generate the times to progression and death. The reference time for each patient is the time the patient is randomized to
the study and the patient is followed until death, drop out or the end of study. In our simulations, we assume that all patients

enter the study at the same time and there is no accrual time. We simulated censoring times in two ways:

1) Random Censoring: Censoring times are generated from an exponential or Weibull distribution with varying parameters to
achieve different levels of censoring. An exponential distribution is used for censoring when the distribution used to generate
the time to event is exponential and a Weibull distribution is used for censoring when the distribution used to generate the

time to event is Weibull.
2) Administrative Censoring: Censoring is generated by a fixed upper limit on follow-up time.

With either type of censoring, the event of death is observed only if the time of death is earlier than the censoring time. The
event of progression is observed only if the time to progression is earlier than either the censoring time or the time of death.
We allow observation of follow-up time after a disease progression event, but not after either death or censoring. Patients who

have neither progression nor death before the time of censoring are followed up to the censoring time.

In each of the 1000 simulations, we then create 10,000 pairs of control and treatment arm patients and determine in how many
pairs the treatment arm wins compared to the control arm (and the time advantage for treatment) and in how many pairs the
treatment arm loses compared to the control arm (and the time disadvantage for treatment), to calculate the WR, the CWR and
the CWD. We first calculate the WR, the CWR and the CWD when progression is viewed as the primary event and death the se-
condary event, and then when death is viewed as the primary event and progression the secondary event. We estimate the
mean WR, the mean CWR and the mean CWD as well as the mean win odds and the mean net benefit from the 1000 simula-

tions and provide the 2.5 and 97.5 percentile of the distribution, the bias and the variance for each measure.

By using Weibull distributions for the time to progression and the time to death, we can consider both situations of proportion-
al hazards (PH) and non-proportional hazards (NPH). When the shape parameters in the Weibull distributions for both arms
are the same, the Weibull distributions fulfil the PH assumption. When the shape parameters in the Weibull distributions are
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different for the treatment and control arms, the Weibull distributions do not fulfil the PH assumption, and we create NPH sce-

narios and estimate the mean values for the WR, CWR, CWD, win odds and net benefit.

In addition, we estimate the mean RMST ratio and mean RMST difference from the PES curves for the two arms and the pair-

wise win time for all four scenarios. Both the 2.5 and 97.5 percentile of the distribution for the RMST ratio and difference and

pairwise win time are provided.

Simulations for the WR, CWR, CWD, net benefit, win odds, RMST ratio and RMST difference and pairwise win time were car-

ried out using SAS and replicated in R in most cases. Codes for these simulations are attached in the Appendix.

Table 4: Parameters associated with the Different Distributions/Scenarios

Scenarios

Distribution Parameters

Resulting
Hazard Ratio

(1) time to PD, death and censoring from
exponential distributions with the same
HR for PD and Death (PH case)

Treatment

PD ~ exp with hazard rate 0.06 (mTime=11.6)
Death ~ exp with hazard rate 0.03 (mTime=23.1)
Censoring ~ exp with hazard rate 0.0005

Control

PD ~ exp with hazard rate 0.12 (mTime =5.8)
Death ~ exp with hazard rate 0.06 (mTime=11.6)
Censoring ~ exp with hazard rate 0.0005

Death : 0.5
PD: 0.5

(2) time to PD, death and censoring from
exponential distributions with opposing
HRs for PD and Death (PH case)

Treatment

PD ~ exp with hazard rate 0.37 (mTime=1.9)
Death ~ exp with hazard rate 0.03 (mTime=23.1)
Censoring ~ exp with hazard rate 0.0005

Control

PD ~ exp with hazard rate 0.14 (mTime= 5)
Death ~ exp with hazard rate 0.06 (mTime=11.6)
Censoring ~ exp with hazard rate 0.0005

Death: 0.5
PD: 2.64

(3) time to PD, death and censoring from
Weibull distributions with the same shape
but different scale parameters and the
same HR for PD and Death (PH case)

Treatment

PD ~ Weibull with shape parameter 2 andscale
parameter 16.67 (mTime=13.9)

Death ~ Weibull with shape parameter 2
andscale parameter 33.34 (mTime=27.8)
Censoring ~ Weibull with shape parameter

2 and scale parameter 2000

Control

PD ~ Weibull with shape parameter 2 and scale
parameter 8.33 (mTime=6.9)

Death ~ Weibull with shape parameter 2

and scale parameter 16.67 (mTime=13.9)
Censoring ~ Weibull with shape parameter

2 and scale parameter 2000

Death : 0.25
PD: 0.25
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Treatment Not constant
PD ~ Weibull with scale parameter 1.2 and shape | over time

(4) time to PD, death and censoring from | parameter 16.67 (mTime=12.3)

Weibull distributions with different shape | Death ~ Weibull with shape parameter 1.2

and scale parameters (NPH case) and scale parameter 33.34 (mTime=24.6)
Censoring ~ Weibull with shape parameter

1.2 and scale parameter 2000

Control

PD ~ Weibull with shape parameter 1 and scale
parameter 8.33 (mTime=5.8)

Death ~ Weibull with shape parameter 1

and scale parameter 16.67 (mTime=11.6)
Censoring ~ Weibull with shape parameter

1 and scale parameter 2000

~: distribution
exp: exponential distribution
mTime: median time in months and units of hazard rate is per month

exp(A) : f(t) = (1/A) exp(t/})
Weibull (A, k) : f(t) = (k/ ) (t/)t)r exp (-(t/1))

4. Results

For the results presented below, we used the random censoring approach. In general, the results for the WR match closely for
the two cases of censoring (random and fixed (administrative) censoring) when the percentage of pairs in the tied category is
low and match closely for the CWR when the percentage of pairs in the right censored category is low (see Section 4.1.3 for de-

tails).

4.1 Scenario 1: Exponential distribution is used for time to PD, death and censoring and

the HRs for PD and death are the same
4.1.1 Relationship between HR, win ratio, and RMST ratio under PH

The HR in our simulations is 0.5 for both PD and death and hence for PFS (see Note 1 in Appendix). This implies that patients
in the treatment arm progress later and survive longer than those in the control arm. The exponential distributions used and
the hazard rates assumed for PD, death and censoring are presented in Table 4, Scenario 1, and the results can be found in

Table 5, Scenario 1.

In this case (Table 5, Scenario 1), we observe that the WR is close to the reciprocal of the HR for PFS both when PD is priori-
tized and when death is prioritized, since the HRs for PD and death are the same and PH is fulfilled. The win odds are close to
the WR for both cases, since the percentage of ties is low. The values for net benefit when PD is prioritized and when death is
prioritized are close to each other since the HRs for PD and death are the same. We observe that when the event rates in the ex-
ponential distributions used to model the time to PD and death are low, the RMST ratio for PES is close in value to the recipro-
cal of the HR for PFS [12] and to the WR when PD is prioritized. The RMST difference from the PFS curves is smaller than the
CWD when PD is prioritized. Since the time to PD is considered in the calculation of PFS (PFS=min(PD, death)) even for sub-
jects who die later, we expect the RMST difference from the PFS curves to be close in value to the CWD when PD is prioritized.
However, they are different measures of the treatment effect as one measures the time to the first event while the other is based
on prioritized outcomes, and they need not produce the same value. The pairwise win time estimates the time in favor of treat-

ment considering PD and death as the two states. In this scenario, the treatment prolongs the time to both PD and death.
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4.1.2 Relation between win ratio and CWR under PH

For Scenario 1, where exponential distributions are used to model the time to PD and death with the same HR for PD and
death, it is found that the CWR is equal to the square of the WR when PD is prioritized (Figure 1 and Appendix for derivation).
The result also holds for a) when death is prioritized and b) when administrative censoring is applied, if the percentage of right

censored cases is low (data not shown).

Win ratio and Continuous win ratio vs HR (PD is
prioritized)

120
100
80
60
40
20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 3.9 1
HR

Win Ratio and Continuous Win Ratio

=—®—\in Ratio =@ Continuous Win Ratio

Figure 1: Relation between WR and CWR using exponential distributions to model the time to PD and death for different HRs
(same HR for PD and death)

4.1.3. Under PH: impact of percentage of tied cases on the WR and impact of percentage of
right censored cases on the CWR

Figure 2 shows how the WR and CWR are impacted when the percentage of tied cases and the percentage of right censored cas-
es respectively increase. This is shown in the specific case when exponential distributions are used to model the time to PD and
death for the treatment and control arm with the same HR for PD and death of 0.5. An exponential distribution is used to mod-
el censoring (the hazard rate for censoring is changed from 0.0005 to 0.01 per month), and PD is prioritized. The WR estimates
are not impacted much with an increase in censoring for this PH scenario involving exponential distributions although the un-
certainty of the estimate becomes larger with increasing censoring, as noted in [5] for their scenario a). For the CWR, there is a
reduction in value as the percentage of right censoring increases. This is due to selective censoring of the treatment arm pa-
tients who tend to have longer time to event values than the control arm patients. In this scenario based on a HR of 0.5, patients
in the treatment arm are winning twice as often as they lose and thus are more likely to be censored. As the HR gets closer to 1,
the number of right censored cases decreases for a similar percentage of ties, and with it, its impact on the CWR decreases. We

show the impact of right censoring on power for the CWR and CWD in Section 4.5.
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Win Ratio and Continuous Win Ratio versus Percentage of
Tied Cases for a HR=0.5 for PD and death, and PD is

prioritized
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Win Ratio and Continuous Win Ratio as a Percentage of Right
Censored Cases when HR=0.5 for PD and death, and PD is
prioritized
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Percentage of Right Censored Cases

—&— Win Ratio —&— Continuous Win Ratio

Figure 2: Relation between WR and percentage of tied cases and between CWR and percentage of right censored cases using ex-

ponential distributions to model the time to PD and death

4.2 Scenario 2: Exponential distribution is used for time to PD, death and censoring with

HR for progression and death in opposing directions

Following Dong et al., 2020 [13], we set the HR for PD to 2.64 and the HR for death to 0.5 giving a HR for PFS of 2 for the
hazard rates shown in the reference. This hypothetical scenario implies that patient progress faster but survive longer in the
treatment arm than in the control arm. The exponential distributions used and the hazard rates assumed for PD, death and cen-

soring are presented in Table 4, Scenario 2, and the results can be found in Table 5, Scenario 2.

The PES curves for the control and treatment arm satisfy the PH assumption. In this case where the HRs for PD and death are
in opposite directions, the WR is close in value to the reciprocal of the HR for PFS when PD is prioritized, and is close in value

to the reciprocal of the HR for death when death is prioritized (Table 5, Scenario 2). The win odds are close in value to the WR
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when PD is prioritized and when death is prioritized, since the percentage of ties is low. The net benefit when PD is prioritized
and when death is prioritized are in opposite directions, as expected in this case of opposing HRs for PD and death. The CWR
is close to 1 when PD is prioritized, which means that the treatment wins by as much time as it loses, and it is ~4.1 when death
is prioritized, which means that the treatment wins by around four times as much time as it loses. In this case of opposing HRs
for PD and death, it is difficult to obtain a relation for WR and CWR as was done when the HRs for PD and death are the same.
For this case of PH using exponential distributions with low event rates used to model the time to PD and death, the RMST ra-
tio for PES is close in value to the win ratio when PD is prioritized. The RMST difference from the PFS curves is smaller than
the CWD when PD is prioritized. In this scenario, the treatment prolongs death but hastens progression. Thus, the pairwise
win time generally has a negative component for the time in favor of treatment for PD and a positive component for the time
in favor of treatment for death. In contrast, for the CWD when death is prioritized, a judgement for win or loss for each pair is
first made based on death and then on progression, if the decision cannot be made based on death. Hence, in this scenario, the

pairwise win time is smaller than the CWD when death is prioritized.

4.3 Scenario 3: PH assumption holds for PD and death; time to PD, death and censoring modeled using

Weibull distributions and the HRs for progression and death are the same

The HR in our simulations is 0.25 (see Note 2 in Appendix) for both PD and death and hence for PFS (see Note 3 in Appendix)
(Table 4, Scenario 3). Thus, patients on the treatment arm progress much slower and survive much longer than those on the
control arm. The Weibull distributions with the same shape parameter in both arms used to model the time to PD, death and

censoring fulfil the PH assumption and are presented in Table 4, Scenario 3, and the results can be found in Table 5, Scenario 3.

We observe that the WR is close to the reciprocal of the HR for PFS both when PD is prioritized and death is prioritized, since
the Weibull distributions used fulfil the PH assumption and since we assume the same HR for PD and death (Table 5, Scenario
3). However, the CWR is not the square of the win ratio in this case of Weibull distributions (Table 5, Scenario 3). The net bene-
fit when PD is prioritized and when death is prioritized are similar in value since the HRs for PD and death are the same, which
also holds true for the win odds. For this case of PH with Weibull distributions, the RMST ratio for PFS is not close in value to
the win ratio when PD is prioritized. The RMST difference from the PES curves is smaller than the CWD when PD is priori-
tized. In this scenario, the pairwise win time is greater than the CWD when PD is prioritized and when death is prioritized,

since the treatment prolongs the time to both PD and death.

In Scenario 3, we investigated the relation between HR/WR and CWR/CWD under a specific hazard ratio of 0.25 for death and
PD. We performed further simulations with Weibull distributions with various values of the same HR for PD and death and the
same shape parameter in both arms to understand the relation between WR/HR and CWR/CWD. We find that when Weibull
distributions with the same shape parameter in both arms of value greater than 1 are used to model the time to PD and death with
the same HR as the corresponding exponential distributions, 1) the WR is the same, but the CWR and CWD are smaller in value
than those for the corresponding exponential distributions (Figure 3 shows the relation between WR and CWR), and 2) the
percentage of right censored cases is lower, and consequently its impact on the CWR and CWD is lower (data not shown). The
WR is the same and the CWR and CWD are larger in value than those for the corresponding exponential distributions if Weibull
distributions with the same shape parameter in both arms with a value less than 1 are used to model the time to PD and death

with the same HR as the corresponding exponential distributions.
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Relation between HR and CWR for Exponentialand Weibull Dstributions
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—8— CWR for Weib ull distributionswith the same HR for PD and death and the same shape parameter (=2) in both arms

=== CWR for Weibull distributions with the same HR for PD and death and the same shape parameter (=0.5) in both arms

Figure 3: Relation between HR/WR and CWR for exponential and Weibull distributions (with shape parameter=2 for both
arms in one case and =0.5 for both arms in the other case) with the same HR for PD and death and PD is prioritized. For the
exponential distributions, CWR=WR?, as in Figure 1, but CWR<WR? and CWR>WR? for the Weibull distributions with the
same HR for PD and death as the corresponding exponential distributions and shape parameter in both arms =2 and the shape
parameter in both arms =0.5 respectively.
The WR=1/HR in all cases since PH is fulfilled.

4.4 Scenario 4: Weibull distributions with different shape and scale parameters and thus PH assumption

does not hold

The Weibull distributions with different shape parameters in the two arms used to model time to PD, death and censoring do

not fulfil the PH assumption and are presented in Table 4, Scenario 4, and the results can be found in Table 5, Scenario 4.

Example PES curves for this case from one simulation are shown in Figure 4. As shown in Table 5, Scenario 4, in this case of
NPH, the WR when PD is prioritized and the RMST ratio from the PFS curves are not the same as the reciprocal of the HR
from Cox regression for PFS, which is expected. The net benefit when PD is prioritized and when death is prioritized are not
close in value, which is also expected in this case of NPH. The CWR is 5.2 when PD is prioritized and 4.1 when death is priori-
tized, and these values can be interpreted as before. The RMST difference from the PES curves is smaller than the CWD when
PD is prioritized. In this scenario, the pairwise win time is greater than the CWD when PD is prioritized and death is priori-

tized, since the treatment prolongs the time to both PD and death.

Table 5: Simulation Results for the Scenarios in Table 4

Statistics Scenario 1 Scenario 2 Scenario 3 Scenario 4
. 0.502 2.029 0.250 0.444
Nizalrleiiﬁ;izp _fS g‘cséi%ﬂceox (0.362, 0.670) (1.488,2.711) (0.170, 0.339) (0.316, 0.589)
& = Pe : 1/Mean HR=1.992 | 1/Mean HR=0.493 | 1/MeanHR=4 | 1/Mean HR=2.252
97.5 percentile)
Results when PD is prioritized
Mean % of Ties 0.37% 0.17% 0% 0.27%
0 o
Mean % of Cases in Right 0.74% 0.39% 0.01% 0.41%
Censored Category
Mean WR (2.5 percentile, 2.049 0.507 4.165 2.619
97.5 percentile) (1.429, 2.891) (0.357,0.702) (2.809, 6.151) (1.799, 3.780)
Bias, Variance 0.049, 0.145 0.007, 0.008 0.165, 0.795 0.0006, 0.256
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Mean CWR (2.5 percentile, 4.195 1.024 10.723 5.183
97.5 percentile) (2.289, 7.297) (0.505, 1.827) (5.949,18.680) (2.793,9.042)
Bias, Variance 0.195, 1.672 -0.010, 0.118 -0.002, 11.703 0.012, 2.678
Mean CWD (2.5 percentile, 9.079 months -0.049 months 8.795 months 9.645 months
97.5 percentile) (5.309, 13.228) (-2.299, 2.560) (6.821,10.933) (6.175,13.251)
Bias, Variance -0.155, 4.220 -0.037, 1.585 -0.001, 1.212 -0.063, 3.316
Mean Win Odds (2.5 2.042 0.508 4.164 2.610
percentile, 97.5 percentile) (1.429,2.891) (0.357,0.703) (2.809, 6.151) (1.793, 3.771)
Bias, Variance 0.042, 0.142 0.008.0.008 0.164, 0.795 -0.008, 0.252
Mean Net Benefit (2.5 0.333 -0.331 0.602 0.436
percentile, 97.5 percentile) (0.177,0.486) (-0.474, -0.174) (0.475, 0.720) (0.284, 0.581)
Bias, Variance -0.0002, 0.006 0.002, 0.006 0.002, 0.004 -0.001, 0.006
Results when Death is prioritized
Mean % of Ties 0.37% 0.17% 0% 0.27%
0 o
Mean 9% of Cases in Right 1.49% 1.46% 0.03% 0.83%
Censored Category
Mean WR (2.5 percentile, 2.022 1.990 4.085 2.298
97.5 percentile) (1.425,2.852) (1.416,2.792) (2.820, 5.995) (1.622, 3.285)
Bias, Variance 0.022, 0.138 -0.010, 0.134 0.085, 0.753 0.004, 0.187
Mean CWR (2.5 percentile, 4.162 4.137 11.024 4.104
97.5 percentile) (2.199, 7.367) (2.192,7.358) (6.243,19.339) (2.200, 7.365)
Bias, Variance 0.162, 1.770 -0.055, 1.748 -0.005, 12.529 0.018, 1.783
Mean CWD (2.5 percentile, 16.112 months 16.050 months 14.685 months 14.435 months
97.5 percentile) (8.802,23.617) (8.792, 23.580) (11.305,18.085) (8.173, 20.709)
Bias, Variance -0.431, 14.628 -0.493, 14.631 -0.006, 3.262 -0.144, 10416
Mean Win Odds (2.5 2.016 1.987 4.085 2.292
percentile, 97.5 percentile) (1.422,2.824) (1.415,2.785) (2.820, 5.995) (1.617, 3.275)
Bias, Variance 0.016, 0.136 -0.013,0.133 0.085, 0.752 -0.002, 0.185
Mean Net Benefit (2.5 0.327 0.321 0.596 0.383
percentile, 97.5 percentile) (0.174, 0.477) (0.172, 0.472) (0.477,0.714) (0.236, 0.532)
Bias, Variance -0.006, 0.006 -0.012, 0.006 -0.004, 0.004 -0.0005, 0.006
Other Measures
. Ratio: 1.838 Ratio: 0.554 Ratio: 1.771 Ratio: 1.985
Mean RMST Ratio and (1.410, 2.355) (0.430,0.710) (1.535,2.042) (1.543,2.519)
difference from the PFS i Difference: -2.051 Difference: 5.066 Difference: 5.360
curves (2.5 percentile, 97.5 Difference: 4.558 L T T
: months months months months
percentile)

(2.545, 6.727)

(-3.0352, -1.142)

(3.675, 6.634)

(3.425, 7.405)

Mean Pairwise Win time
(2.5 percentile, 97.5
percentile)

17.984 months
(10.694, 25.556)

13.940 months
(6.785, 21.509)

18.106 months
(14.561, 21.611)

16.664 months
(10.344, 23.019)
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Scenario 1. Time to PD, death and censoring modeled using exponential distributions with the same HR for PD and death
(the PH assumption holds: HR for PD and death is 0.5)

Scenario 2. Time to PD, death and censoring modeled using exponential distributions with opposing HRs for PD and death
(the PH assumption holds: HR for PD is 2.64 and for death it is 0.5)

Scenario 3. Time to PD, death and censoring modeled Weibull distributions with the same shape parameters but different
scale parameters for the control and treatment arms (the PH assumption holds: HR for PD and death is 0.25)

Scenario 4. Time to PD, death and censoring modeled Weibull distributions with different shape and scale parameters for the
control and treatment arms (the PH assumption does not hold)

A hazard rate of censoring of 0.000000005 for exponential distributions or the same value for the scale parameter in the
Weibull distribution for censoring was used to obtain the true value for CWR and CWD to estimate bias
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Figure 4: PES curves for treatment and control arm using Weibull distributions to model the time to PD and death (NPH case)

(example of 1 simulated curve).

4.5 Impact of Right Censoring on Power for the CWR and CWD

We studied the impact of right censoring on power for the CWR and CWD for the four scenarios in Sections 4.1 to 4.4 by
changing the hazard rate or parameter for censoring. There are limitations in these simulations because the bootstrapping pro-
cedure used to obtain the confidence intervals for each simulation could be performed only a 100 times due to computational
limits (with 100 simulations and 100 patients in each arm and 100 replicates for each simulation, there are 10° observations in
the bootstrapping data set). However, the results (Table 6 and Appendix Table 3) show that for the four scenarios studied, the
power remains high in general for the CWR even as the percentage of right censoring increases. Further, the CWD estimation
is affected when the right censoring percentage reaches >20%. Note that our code also allows the estimation of power for the

WR, net benefit and win odds for different parameters for censoring.
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Table 6: Power for Detecting Differences in CRW and CWD when PD is prioritized and death is prioritized for Scenario 1 with

time to PD, death and censoring from exponential distributions (the other 3 scenarios are shown in Appendix Table 3).

Scenario 1
I_éiznirjriliatzrf:ér Power for Power for Iéiﬁlsr(iﬁatzlg Power for Power for
ercentage (%f Right CWD when CWR when ercentage gf Right CWD when CWR when
P g & PD is PDis P g 8 death is death is

Censoring when rioritized rioritized Censoring when rioritized rioritized
PD is prioritized b b death is prioritized P p

0.0005, 0.8% 94% 91% 0.0005, 1.6% 92% 89%

0.005, 7% 83% 93% 0.005, 13% 67% 90 %
0.01, 12.4% 68% 92% 0.01,21.7% 34% 87 %
0.02, 19.1% 13% 90%

The true values for CWR and CWD were obtained by conducting 1000 simulations with a very low hazard rate for censoring (u-

nit of hazard rate is per month).

5. Application to Clinical Trial Data

We estimated the WR and the CWR using data from a Phase III trial of 172 patients with surgically resected non-small lung
cancer randomized to receive radiotherapy with or without adjuvant platinum-based chemotherapy [14]. We analysed the data
from 164 eligible patients, who had a mean follow-up time from randomization of 3.7 years [15]. We use the time to first re-
lapse (PD) and the time to death as the events and calculate the WR,CWR, CWD (Table 7).

Note that the HR for PFES is 0.683 but the PFS curves do not satisfy the PH assumption. The results for the WR, CWR and CWD in-
dicate that the arm with radiotherapy plus chemotherapy wins 1.8 times as often as it loses to the control arm with radiothera-
py alone, wins by 1.8 times as many days as it loses, and wins by about 205 days compared to the control arm, when PD is prior-
itized. The radiotherapy plus chemotherapy arm wins 1.4 times as often as it loses to the control arm, it wins by 1.4 times as
many days as it loses and wins by about 138 days compared to the control arm, when death is prioritized. Based on the low per-
centage of ties, our simulation results (see Section 4.1.3) suggest that the WR estimate is likely accurate. However, the CWD is
likely not an accurate estimate of the duration of benefit due to the large number of right censored cases. The win odds when
PD is prioritized and when death is prioritized are close in value to the WR in each case, which is expected given the small per-
centage of ties. The IPCW-adjusted WR when PD is prioritized and when death is prioritized are close in value to the unadjust-
ed WR in each case, given the small percentage of ties. However, we still estimated the IPCW-adjusted WR to illustrate that this
can done if the percentage of ties is higher. We also provided the IPCW-adjusted CWR and CWD when PD is prioritized and
when death is prioritized. The net benefit when PD is prioritized and when death is prioritized are of similar positive magni-
tude. In this case of NPH, the RMST ratio from the PFS curves is not equal to the WR when PD is prioritized. The RMST differ-
ence from the PES curves of ~223 days is slightly larger than the CWD of ~205 days and larger than the pairwise win time of
~182 days.

Table 7: WR, CWR, CWD, Win Odds, Net Benefit, RMST ratio and difference and Pairwise win time using data from an

oncology trial

HR for PFS 0.683 (0.491, 0.950)1/Mean HR=1.464

Results when PD is prioritized

% of Ties 2.68%

% of Cases in Right Censored Category 22.08%
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Win Ratio 1.815 (1.221, 2.620)*

IPCW Adjusted Win Ratio 1.679 (1.157, 2.428)*

Continuous Win Ratio 1.804 (0.936, 3.519)*
Continuous Win Difference 204.64 (-22.591, 416.105) days*

IPCW Adjusted Continuous Win Ratio 1.707 (0.891, 3.410)*
IPCW Adjusted Continuous Win Difference 206.14 (-43.706, 493.593) days*

Win Odds 1.785 (1.217, 2.542)

Net Benefit 0.282 (0.098, 0.435)

Results when Death is prioritized

% of Ties 2.68%
% of Cases in Right Censored Category 27.98%
Win Ratio 1.436 (0.980, 2.103)*
IPCW Adjusted Win Ratio 1.350 (0.922, 2.012)
Continuous Win Ratio 1.430 (0.790, 2.581)*
Continuous Win Difference 138.435 (-97.176, 354.218) days*
IPCW-adjusted Continuous Win Ratio 1.402 (0.769, 2.507)*
IPCW-adjusted Continuous Win Difference 135421 (-112.507, 373.915) days*
Win Odds 1.422 (0.981, 2.048)*
Net Benefit 0.174 (-0.01, 0.344)*
Other Measures

Ratio (95% CI): 1.388 (0.949, 2.124) *

RMST Ratio and Difference from the PES curves | 1y, o (9504 C1): 222,96 (-53.406, 499.326) days

Pairwise Win time 182.5 (-70.363, 414.957) days*

* The 95% CI is calculated via bootstrapping

6. Discussion

The WR is an alternate measure of the treatment effect in the case of a composite endpoint. In this approach, the events that
make up the composite endpoint can be ordered or prioritized. We have studied the WR and proposed the novel CWR and
CWD, and considered the properties of these measures using simulations with exponential and Weibull distributions covering
PH and NPH scenarios. We have also estimated the WR, CWR and CWD for an oncology data set. In addition, we have calcu-

lated the net benefit, win odds, RMST ratio and RMST difference and pairwise win time to put our results in context.

For the common oncology composite endpoint of progression-free-survival, defined as the earliest of progression or death, we
have determined the WR when PD is prioritized and when death is prioritized. To simulate the endpoint, we have considered
the case of PH and NPH for the PFS curves. The WR is the reciprocal of the HR for a single time to event endpoint or a com-
posite time to event endpoint with the same HR for all events (e.g. PD and death) if the PH assumption holds. The WR when
PD is prioritized is close in value to the RMST ratio from the PFS curves when exponential distributions are used to model the

time to PD and death and when the event rates are low [12]. When exponential distributions are used to model the time to PD
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and death for both the treatment and control arm with the same HR for PD and death, it is found that the CWR is equal to the
square of the WR (see Appendix for Proof). When Weibull distributions are used to model the time to PD and death with the
same HR for PD and death as the corresponding exponential distributions and with the same shape parameter in both arms of
value greater than 1, the WR is the same, but the CWR and CWD are smaller in value than those for the corresponding exponen-
tial distributions. Thus, when specific distributions are used to model the time to PD and death, such as exponential and Weibull
distributions, with the same HR for PD and death, it is possible to study the relation between HR/WR and CWR/CWD. However,
when the HRs for PD and death are in opposing directions, no general relation between WR and CWR can be obtained, and it

needs to be studied on a case-by-case basis.

We found that when exponential distributions describe the time to PD and death, which automatically fulfil the PH assumption,
the WRis close to the reciprocal of the HR for PFS when PD is prioritized and is close to the reciprocal of the HR for death when
death is prioritized. However, when PH is not fulfilled, as expected, the WR is different than the reciprocal of the HR for PFS,
when PD is prioritized. In the case of NPH and in the case of opposing HRs for PD and death, the CWR, CWD, RMST ratio and
difference and pairwise win time can be used as additional measures to the WR to understand the treatment effect. The RMST
difference and the CWD both provide a measure of time gained (or lost) on the treatment arm compared to the control arm but
are not the same measures of the treatment effect as one measures the time to the first event while the other is based on prioritized
outcomes. In the PH scenarios studied, the RMST difference provided a more conservative estimate than the CWD of the time
gained or lost on the study drug. Although these measures of the treatment effect are estimated in different ways, they were close
in value in most cases we examined. We provided a third measure calculated in months or days, the pairwise win time, which
estimates the time in favor of treatment considering PD and death as the two states. We also provided results for the net benefit
and win odds for all the scenarios. The win odds were very close in value to the WR in the cases we examined since the percentage

of ties was low. These measures could complement the WR in understanding the results.

We also simulated the censoring for PFS in two different ways to mimic random censoring and administrative censoring. Using
these censoring methods, we obtain very similar results in general for the WR if the percentages of ties is low. We have shown
that the WR is stable however even if the percentage of ties increases when exponential distributions are used to model the time
to PD and death. Other work has also shown that in general, as the percentage of ties increases, the accuracy of the WR decreases
and an IPCW-adjusted WR gives an unbiased estimate of the treatment effect (5). We obtain similar values for the CWR and
CWD using the two censoring methods, if the percentage of right censored cases is low. We estimated the IPCW-adjusted WR,
CWD and CWR to adjust for censoring for our example with data from an oncology trial. The CWR like the WR can be affected
by censoring, leading to several ties. We have shown that right censoring impacts the CWR more than the WR. However,
compared to the CWD, the CWR maintains the power even when the percentage of right censoring is high (example 20%) in the
scenarios we examined. The utility of these measures should be further explored and validated in larger data sets from cancer

trials.

Besides the WR, other prioritized comparisons include the Finkelstein-Schoenfeld method and the net benefit; note that the
Finkelstein-Schoenfeld statistics differ from the net benefit estimate only by a constant (see Table 2 of [16] for a summary of the
tests), and thus should result in the same p-values. The WR, net benefit, win odds, Finkelstein-Schoenfeld test all fall under the
framework of the generalized pairwise comparisons methods. In general, in this framework, the difference in endpoints (Y-X)
(intervention arm - control arm) can be compared to a threshold of clinical relevance A. For a single endpoint, if (Y > X + A), the
pair is counted as a win and if (X 2 Y + A), the pair is counted as a loss[17]. Otherwise, the pair is a tie. In the case of censoring,
the pair is counted as uninformative as it might not be possible to compare the difference to a threshold. When there are several
endpoints, the endpoints are prioritized based on clinical relevance [17]. The endpoint with the highest priority is analysed first,
and neutral and uninformative pairs are analysed based on the endpoint of lower priority. Our approach is a little different with
the CWR and CWD. These new measures give us an idea of how much benefit in terms of time the study drug provides to the

patient compared to the control, and may help doctors and payers better understand the effect of the study drug.
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Appendix
Relation between win ratio (WR) and continuous win ratio (CWR) for exponential distributions:

The WR was introduced in Pocock et al. [6]. Consider the case where patients are to be compared by two prioritized outcomes
i.e. patients are first compared with respect to the first priority outcome and are compared with respect to the second outcome
only if the comparison of the highest priority outcome does not result in a win or loss. If a pair of patients is randomly picked,
where one is from the treatment arm and the other is from the control arm, the WR is the ratio of the probability that a patient
from the treatment arm wins to that a patient in the control arm wins. A WR >1 implies that the treatment is beneficial. Mathe-

matically this can be defined as follows.

Let,
T = time to event for treatment arm
C = time to event for control arm
and
p(t) = win probability for treatment arm
p(c) = win probability for control arm
Then the WR is defined as
wp— O
p(c)

In this paper we are introducing an extension to the win ratio measure which we are calling the continuous win ratio. We
define this to be the ratio of the number of months the treatment arm wins by when it wins to the number of months it loses by

when it loses. Mathematically, we define this as

cwp_ POFET—CIT>C)

pc)x E(C—=T|C>T)

Here E(x) represents the expected value, or mean value of the variable x. There is a relationship between WR and CWR.
E(T-C|T>C)
CWR=WRx
E(C-T|C>T)

It can be shown for the special case that T and C follow exponential distributions with hazard rates of A, and Ac respectively,

that

ArAc ArAc
E(T-CT>C)= sand E(C-T|C >T) =
( | ) Ar (A1 + A¢) ( | ) Ao (Ar + A¢)
So, with T and C exponential,
_ E(T) _ Ac
CWR=WRx EC) WR x "
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1 2
CWR=WRx% 2 =WR

The last equality following from the exponential distributions having proportional hazards.

Continuous Win Ratio Assuming Exponential Distributions for PD and Death and the Same HR for PD and

Death and Assuming Administrative Censoring (PH Case):

We consider the case where the PH assumption is fulfilled (exponential distributions to model PD and death for both the
treatment and control arm). The censoring is based on a fixed follow-up of 120 months. In this case, we provide the hazard ratio
(HR) for PFS and the WR CWR, CWD and other measures when PD is prioritized and when death is prioritized. The HR in our
simulations for the proportional hazards case is 0.5 for both PD and Death and hence for PFS. The hazard rates for PD are 0.12
(median time of 5.8 months) and 0.06 per month (median time of 11.6 months) in the control and treatment arm respectively
and for death 0.06 (median time of 11.6 months) and 0.03 per month (median time of 23.1 months) in the control and treatment

arm respectively.

Appendix Table 1: WR, CWR, CWD and other measures assuming exponential distributions for PD and death and the same

HR for PD and death and assuming administrative censoring (PH case)

Mean HR for PES (using cox regression)(2.5 percentile, 97.5 percentile) 0.508 (0':315{,:()1.‘696619)1/ Mean
Results when PD is prioritized
Mean % of Ties 0%
Mean % of Cases in Right Censored Category 0.69%

Mean Win Ratio (2.5 percentile, 97.5 percentile) 2.023 (1.453, 2.807)

Mean Continuous Win Ratio (2.5 percentile, 97.5 percentile) 4.045 (2.261, 6.679)
Mean Continuous Win Difference (2.5 percentile, 97.5 percentile) 8.938 (5.358, 12.786) months

Mean Win Odds (2.5 percentile, 97.5 percentile) 2.023 (1.453, 2.807)

Mean Net Benefit (2.5 percentile, 97.5 percentile) 0.330 (0.185, 0.475)

Results when Death is prioritized
Mean % of Ties 0%
Mean % of Cases in Right Censored Category 2.75%

Mean Win Ratio (2.5 percentile, 97.5 percentile) 2.014 (1.474, 2.806)

Mean Continuous Win Ratio (2.5 percentile, 97.5 percentile) 3.987 (2.217, 6.734)
Mean Continuous Win Difference (2.5 percentile, 97.5 percentile) 15.590 (9.010, 22.651) months

Mean Win Odds (2.5 percentile, 97.5 percentile) 2.014 (1.474, 2.806)

Mean Net Benefit (2.5 percentile, 97.5 percentile) 0.328 (0.192, 0.475)

Other Measure
Mean RMST Ratio and Difference from PFS Curves (2.5 percentile, 97.5 Dif};:;[ie(r)lzcle':gzig 5(;?23 ;)32,3632% 6)
percentile) months

Annex Publishers | www.annexpublishers.com Volume 10 | Issue 1



20

Journal of Biostatistics and Biometric Applications

Appendix Table 2: Calculation of the win ratio and continuous win ratio assuming death is prioritized over progression. An al-

gorithm following similar logic can be used when progression is prioritized over death.

Win ratio

Continuous win ratio

If both the control

and treatment arm

patient in the pair
die

The winner is the one who dies later (flag=1 if
the treatment arm patient dies later than the
control arm patient and 0 if the treatment arm
patient dies earlier).

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (death date of

winner- death date of loser)

If either the control
arm patient or the
treatment arm
patient in the pair

The winner is the one who doesn’t die (flag=1
if the treatment arm patient does not die and 0
if the treatment arm patient dies), assuming
that the patient is followed for a longer period
than the patient who dies. If the patient who
doesn’t die is not followed for a longer period

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (censoring
date of winner- death date of loser),
assuming that the winner is followed

dies but not both than the patient who dies, then it needs to be .
. . ) . for a longer period than the loser.
observed which of the two patients in the pair
progresses first to decide the winner.
If neither the

control arm patient
nor the treatment
arm patient in the
pair dies

It needs to be seen as to who progresses first to
decide the winner.

If both the control

and treatment arm

patient in the pair
progress

After considering death, if it cannot be
determined who wins and if both patients in
the pair progress, then the patient who
progresses later wins (flag=1 if the treatment
arm patient progresses later than the control
arm patient and 0 if the treatment arm patient
progresses earlier).

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (progression

date of winner- progression date of

loser)

If either the control
arm or the
treatment arm
patient in the pair
progresses but not

After considering death, if we cannot
determine who wins, and only either the
control arm or the treatment arm patient
progresses, then the person who does not

progress wins (flag=1 if the treatment arm
patient does not progress and 0 if the
treatment arm patient progresses), assuming
that the patient is followed for a longer period

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (max(PFS date
or censoring date of winner)-
progression date of loser), assuming
the winner is followed for a longer
period than the loser. If not, we declare

both than the patient who progresses. If the patient a tie. and we assien the number of
who doesn’t progress is not followed for a m’onths to bOtZ(};l arms to be 0
longer period than the patient who progresses, ’
we declare a tie (we assign flag=0.5).
If neither the

control arm nor the
treatment arm
patient in the pair
progresses

After considering death, if we cannot
determine who wins, and neither the control
arm nor the treatment arm patient progresses,
then we declare a tie (we assign a flag=0.5).

We assign the number of months to
both arms to be 0.
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The continuous win ratio is the sum
of months where flag=1 divided by
the sum of months where flag=0,
considering all control arm and
treatment arm pairs. The continuous
win difference is the sum of months
where flag=1 minus the sum of
months where flag=0, considering all
control arm and treatment arm pairs.
This result must be divided by the
number of pairs.

The win ratio is the sum of flag=1 divided by
sum of flag =0, considering all control arm and
treatment arm pairs

Appendix Table 3: Power (shown in bold) for Detecting Differences in CRW and CWD when PD is prioritized and death is pri-

oritized

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CWD and CWR when PD is prioritized

CWD (hazard rate or parameter
for censoring, percent of right
censoring, power)

0.0005, 0.8%, 94%
0.005, 7%, 83%
0.01, 12.4%, 68%
0.02, 19.1%, 13%

0.0005, 0.38%, 95%
0.01, 6.9%, 88%
0.02, 11.4%, 80%
0.05,20%, 61%

0.0005, 0.01%, 96%
0.01, 3.2%, 89%
0.02, 10.8%, 68%

0.0333, 21.1%, 6%

0.0005, 0.44%, 92%
0.01, 10.6%, 76%
0.02, 18.4%, 22%

CWR (hazard rate or parameter
for censoring, percent of right
censoring, power)

0.0005, 0.8%, 91%
0.005, 7%, 93%
0.01, 12.4%, 92%
0.02, 19.1%, 90%

0.0005, 0.38%, 95%
0.01, 6.9%, 84%
0.02, 11.4%, 78%
0.05, 20%, 58%

0.0005, 0.01%, 94%
0.01, 3.2%, 94%
0.02, 10.8%, 90%

0.0333, 21.1%, 85%

0.0005, 0.44%, 91%
0.01, 10.6%, 94%
0.02, 18.4%, 92%

CWD and CWR when Death is Prioritized

CWD (hazard rate or parameter
for censoring, percent of right
censoring, power)

0.0005, 1.6%, 92%

0.005, 13%, 67%
0.01, 21.7%, 34%

0.0005, 1.5%, 92%

0.005, 12.7%, 59%
0.01, 21.1%, 22%

0.0005, 0.04%, 93%
0.005, 2.4%, 91%
0.01, 9.2%, 73%
0.02, 26.4%, 19%

0.0005, 0.87%, 92%

0.005, 10.4%, 85%
0.01, 19.2%, 56%

CWR (hazard rate or parameter
for censoring, percent of right
censoring, power)

0.0005, 1.6%, 89%
0.005, 13%, 90 %
0.01, 21.7%, 87%

0.0005, 1.5%, 89%
0.005, 12.7%, 88%
0.01, 21.1%, 82%

0.0005, 0.04%, 91%
0.005, 2.4%, 92%
0.01, 9.2%, 90%
0.02, 26.4%, 83%

0.0005, 0.87%, 91%
0.005, 10.4%, 91%
0.01, 19.2%, 91%

The true values for the CWR and CWD were obtained by conducting 1000 simulations with a very low hazard rate of censoring

of 0.000005 per month for exponential distributions or a value of 0.000005 for the scale parameter for Weibull distributions.

Power is shown in bold in the above table.

Notes:

Note 1) : The HR for PFS is the ratio of the sum of the hazard rates for PD and death in the treatment arm to that in the control

arm. This is because if X and Y are independent exponential random variables with hazard rate A, and A, respectively, then
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Z=min(X, Y) is an exponential random variable with hazard rate A,+A,. In reality, PD and death may not be independent and

this is an approximation for PFS.

Note 2): For two Weibull distributions with the same shape parameter ‘a’ for the treatment and control arms, the hazard ratio

HR is (b0/b1)", where b0 and b1 are the scale parameter (event rates) of the control and treatment arm respectively.

Note 3): It can be shown that the minimum of two independent Weibull random variables with the same shape parameter is a
Weibull random variable with the same shape parameter and a modified scale parameter (modified event rate). Using this, it
can be shown that the hazard ratio for PFS is A, assuming that independent Weibull random variables all with distributions hav-
ing the same shape parameter are used to model PD and death in the control and treatment arm respectively and assuming that

the hazard ratio for both PD and death is A.

Codes for Win Ratio
https://www.annexpublishers.com/articles/JBIA/10103-Code.pdf
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