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Abstract

The win ratio is an estimate of the treatment effect used in situations where composite endpoints are employed and where

the events that make up the composite endpoint can be prioritized. We study the win ratio in the context of oncology trials

with the events of progression and death. We then propose two new measures related to the win ratio, called the continuous

win ratio and continuous win difference. We define the continuous win ratio to be the ratio of the length of time the treat-

ment arm wins by when it wins to the length of time it loses by when it loses, while the continuous win difference is the dif-

ference between these two quantities scaled by the number of pairs. The win ratio, the continuous win ratio, continuous win

difference,  net  benefit,  and  win  odds  are  compared  using  simulations  in  the  setting  where  death  is  considered  the  high-

est-priority or primary event, and progression is considered the secondary event, and when the priorities are switched. We

also estimate the restricted mean survival time (RMST) difference and ratio and pairwise win time for various scenarios. Us-

ing exponential  and Weibull  distributions to simulate times to progression and death,  we consider both the proportional

and non-proportional hazards situations. Finally, we present an oncology case study to estimate the win ratio, the continu-

ous win ratio, the continuous win difference, net benefit, win odds, RMST difference and ratio and pairwise win time. The

continuous win ratio,  continuous win difference and RMST difference and pairwise win time are measures of  how much

benefit in terms of time the study drug provides to the patient compared to the control, and thus may help doctors and pay-

ers better understand the effect of the study drug.

Keywords: Win Ratio; Continuous Win Ratio; Continuous Win Difference; Win Odds; Net Benefit; RMST Difference and

Ratio; Pairwise Win Time
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Introduction

Progression free survival (PFS) is a common endpoint in late phase oncology clinical trials. It is a composite endpoint of pro-

gression  or  death  (defined  as  the  earliest  of  progression  (PD)  or  death).  The  log-rank  test  is  generally  used  to  determine

whether the progression-free survival curves of the treatment arm and control arm are different. The log rank test is optimal un-

der the proportional hazards (PH) assumption, which means that the hazard ratio (HR) for treatment on PFS does not change

over time.

The win ratio (WR) is an alternate estimate of the treatment effect in situations where composite endpoints are employed. The

win ratio estimates the ratio of the probability that a randomly chosen treatment arm patient has a better outcome (“winning”)

than a randomly chosen control arm patient, to the probability that the control arm patient has a winning outcome over the

treatment arm patient. In the win ratio approach, the events that make up the composite endpoint can be prioritized and evalu-

ated sequentially from highest to lowest priority to determine the winner. Under PH, the win ratio is equal to the reciprocal of

the HR for a time to event endpoint with a single event [1, 2].

In this paper, we consider the win ratio in the context of oncology trials with the events of progression and death. We then pro-

pose two new measures based on the win ratio, called the continuous win ratio (CWR) and continuous win difference (CWD).

The rationale for these new measures is to not only address the likelihood of treatment arm patients winning, but also to quanti-

fy the treatment benefit in terms of time, considering progression or death as the primary event. The CWR provides a ratio of

how much time the treatment arm gains when it wins to how much time it loses when it loses. The continuous win difference is

the difference between how much time the treatment arm gains when it wins to how much time it loses when it loses, scaled by

the number of pairs. The win ratio, the CWR and CWD are compared in the setting where death is considered the highest-pri-

ority or primary event, and progression is considered the secondary event, and in the setting where progression is considered

the primary event and death is the secondary event (Table 1).

Table 1: Pair Outcomes with Two Endpoints (Adapted from [3])

Endpoint with higher priority e.g. Death Endpoint with lower priority e.g. Progression Pair Outcome

Wins Ignored Wins

Loses Ignored Loses

Uninformative/Neutral Wins Wins

Uninformative/Neutral Loses Loses

Uninformative/Neutral Uninformative/Neutral Tied

We also calculate the established measures of net benefit, win odds, restricted mean survival time (RMST) ratio and RMST dif-

ference and a recently proposed measure called the pairwise win time to put our new measures in context. The RMST differ-

ence, CWD and pairwise win time have the same units (months or days) and provide measures of how much time is gained (or

lost) from the treatment compared to the control. The RMST difference has been proposed as an appropriate measure of the

treatment effect when the PH assumption is not met [4]. We propose using the CWR and CWD as complementary measures to

the WR, win odds and net benefit to more fully understand the treatment effect. The win ratio, CWR, CWD, net benefit, win

odds, RMST ratio and RMST difference and pairwise win time are defined in Table 2.
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Table 2: Definitions of Win Ratio, Continuous Win Ratio, Continuous Win Difference and RMST Difference and Ratio

Parameter Definition

Win Ratio (WR)
If a pair of patients is randomly picked, where one is from the treatment arm and the

other is from the control arm, the win ratio is the ratio of the probability that a patient
from the treatment arm wins to that a patient in the control arm wins.

Continuous Win
Ratio (CWR)

The ratio of the length of time the treatment arm wins by when it wins to the length of
time it loses by when it loses.

Continuous Win
Difference (CWD)

The difference between the length of time the treatment arm wins by when it wins to
the length of time it loses by when it loses, scaled by the number of pairs.

Net Benefit The difference in win proportions.

Win Odds
The odds of win proportions where a tie results in a half win being assigned to the

treatment arm and a half win to the control arm.

RMST Difference

The absolute gain or loss in event-free survival time due to treatment, where event
times are restricted to be less than or equal to time . The RMST values are calculated
up to a common time , which is the minimum of the largest observation times in the

control and treatment arms.

RMST Ratio
The ratio of the area under the Kaplan-Meier curve for the treatment arm to the

control arm, where the areas are calculated up to time .

Pairwise Win time

The pairwise average of the win time differences. A win time difference is the excess
time that the patient in the treatment arm is in a more favorable (or unfavorable) state
than the patient in the control arm in each pair over the effective common follow-up

time (maximum of death times if both patients in the pair die and minimum of
censoring time(s), if either patient is censored).

The WR, CWR, CWD, net benefit, win odds, RMST difference and ratio and pairwise win time were compared via the follow-

ing four simulation scenarios:

1) With exponential distributions where the hazard ratios for progression and death are the same (PH assumption holds);

2) With exponential distributions where the hazard ratios for progression and death are in opposing directions (PH assump-

tion holds);

3) With Weibull  distributions with the same shape parameter and where the hazard ratios for progression and death are the

same (PH assumption holds);

4) With Weibull distributions with different shape parameters for the control and treatment arms (PH assumption is violated).

The fourth scenario is used to evaluate the impact of the critical PH assumption.

Finally, we use oncology trial data and estimate the win ratio, CWR, CWD, net benefit, and win odds in the setting where death

is considered the highest-priority event, and progression is considered a secondary event, and if the priority is reversed. In addi-

tion, we estimate the RMST difference and ratio and pairwise win time. Further, we provide the inverse probability of censor-

ing weighted (IPCW) WR to account for the occurrence of right-censoring in the time to event data (5), as well as the IPCW-ad-

justed CWR and CWD for these data.
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Method:  Estimating  the  WR,  CWR,  CWD,  Win  Odds,  Net  Benefit,  RMST  Ratio  and
RMST  Difference

WR, CWR and CWD - unmatched analyses

Expanding  on  the  WR algorithm in  Pocock  et  al.  [6],  the  derivation  of  the  WR,  CWR and CWD in  the  cancer  setting  with

death as the primary event and progression as the secondary event are presented in Table 3. Without loss of generality, we will

use months as the unit of time.

Table 3: Algorithm for the derivation of WR, net benefit, CWR and CWD

Description Algorithm consideration

Pairing
Each patient in the control arm is paired with every patient in the treatment arm. Thus, if

there are n
c 
patients in the control arm and n

t
 patients in the treatment arm, there are

N
p
=n

c
*n

t 
pairs.

Pairwise
comparison for

win vs. loss

Each one-to-one pair of patients is classified into one of five categories:The treatment
arm patient dies first (including if the control arm patient does not die and is followed
longer than the treatment arm patient); we calculate the difference in months between
the control arm patient’s death date or censoring date and the treatment arm patient’s

death date;The control arm patient dies first (including if the treatment arm patient does
not die and is followed longer than the control arm patient); we calculate the difference
in months between the treatment arm patient’s death or censoring date and the control

arm patient’s death date;For cases c), d) and e), it is assumed death cannot be used to
assess a win or a loss between the pair of patients being compared. The treatment arm
patient progresses first (including if the control arm patient does not progress and is

followed longer than the treatment arm patient); we calculate the difference between the
treatment arm patient’s PFS date and the control arm patient’s progression date;The
control arm patient progresses first (including if the treatment arm patient does not

progress and is followed longer than the control arm patient); we calculate the difference
between the control arm patient’s PFS date and the treatment arm patient’s progression

date; none of the above, and the pair produces a tie. We assign 0 months to this
pair.Based on death as the primary event and progression as the secondary event in our

example, categories c) and d) are considered only if it is not known who dies first.
Category e) contains patients who had neither death nor progression but will also

include pairs where one of the patients had an event but the other patient’s follow-up
time was shorter and hence it could not be decided which arm won.

Win ratio

We denote the numbers of pairs in categories a), b), c), d), and e), respectively by N
a
, N

b
,

N
c
, N

d
, and N

e
. These numbers are used to quantify the treatment effect: N

b
 + N

d
 = N

W 
the

number of ‘winners’, and N
a
 + N

c
 = N

L
 is the number of ‘losers’. The win ratio treatment

effect is then WR=N
W
/N

L
.

 
A win ratio of 2 implies that treatment arm wins in twice as

many pairs as it loses. It can also be interpreted as a patient in the treatment arm is 100%
more likely to win than a patient in the control arm.
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Continuous win
ratio/continuous

win difference

The trial’s composite endpoint results are summarized by M
a
, M

b
, M

c
, M

d
, and M

e
, which

stand for the sums of the number of months from pairs in categories a), b), c), d), and e),
respectively. M

b
 + M

d
 = M

W
 is the number of months of advantage for ‘winners’.

Similarly, M
a
 + M

c
 = M

L
 is the number of months of disadvantage for the ‘losers’.

CWR=M
W
/M

L 
the ‘continuous win ratio’, provides a ratio of how much time the

treatment gains in the pairs where the treatment arm does better than the control arm to
how much time the treatment loses in the pairs where the treatment arm does worse than

the control arm. A CWR of 2 can be interpreted as the treatment winning by twice as
much time as it loses. CWD=(M

W
-M

L
)/N

P
 is the ‘continuous win difference’ (N

p
 is the

total number of pairs). This measure provides an absolute difference of how much time
the treatment gains in the pairs where the treatment arm does better than the control
arm to how much time the treatment loses in the pairs where the treatment arm does
worse than the control arm. A CWD of 2 months can be interpreted as winning two

months more from being in the treatment arm than in the control arm. This represents
the benefit (or loss) of treatment in the time to event, comparing a treated subject to a

control subject.

In Table 3, in cases a) – d) when one of the patients in the pair is right censored, then the time advantage or deficit for the treat-

ed arm patient cannot be exactly specified (for e.g. if the first patient in the pair dies at day 50 and the second patient in the pair

is alive and censored at day 70, the difference of 20 days is the minimum value of the difference). In our basic approach to calcu-

late the CWR and CWD, which we evaluate in simulation studies, we take the time differences in these cases by treating the cen-

soring times as if these were event times. This leads to minimizing the time advantage or deficit for such pairs. As with the basic

unmatched win ratio calculations which are challenged by a high proportion of ties with a high proportion of right censored ob-

servations, so are the basic unmatched CWR and CWD calculations. We evaluate the impact on power as right censoring in-

creases on the CWR and CWD for the four simulation scenarios we consider.

Note that an IPCW adjusted WR, with weights based on the Kaplan-Meier curve of the time-to-event data, can be calculated

when the percentage of ties is  high. Such an estimate has been shown to be asymptotically unbiased [5].  Since censoring has

similar effects on the CWD and CWR, adjusting by such weights is anticipated to reduce the bias in these estimates when right

censoring increases. In light of this, for our example with data from an oncology trial, we derive an IPCW-adjusted win ratio,

CWR and CWD to provide estimates and associated CIs, which are generally expected to be wider than those for the unadjust-

ed case. However, the IPCW-adjusted CWR and CWD have not been shown to be unbiased estimators under independent cen-

soring and need further exploration to establish their properties.

In our derivation of the CWR and CWD, time advantages in the time to death and progression are not differentiated. This is

similar to how the WR, net-benefit and win odds are derived; once the events are prioritized (say death), we prioritize the time

advantage for death over the time advantage for progression.

Further details on the algorithm for deriving the CWR and CWD can be found in Appendix Table 2.

For the WR, CWR, CWD, and other measures, we recommend using bootstrapping to calculate the 95% Confidence Interval

(CI) with a single data set, as done in the analysis of the oncology data set in the results section.

Net Benefit and Win Odds

The net benefit measures the difference in win proportions (NW – NL)/Np, Np is the number of pairs, and the win odds is defined

as an odds of win proportions where a tie results in a half win being assigned to the treatment arm and a half win to the control

arm ([NW+0.5*Nt]/[NL+0.5*Nt], Nt is the number of ties) [7, 8]. The win ratio, net benefit and win odds test the same hypothesis

of no difference in proportion of wins and result in similar p-values.
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RMST Difference, RMST Ratio, RMT-IF/Pairwise Win time

The RMST difference is the absolute gain or loss in the event-free survival time due to the treatment, where the event times are

restricted to be less than or equal to time . The RMST values for each simulation are calculated up to a common time , which

is the minimum of the largest observation times in the two arms i.e. control and treatment arm. Two more recent references [9,

10] introduce a concept called restricted mean time in favour of treatment (RMT-IF), which considers multiple events or states

such as cancer progression, metastasis, and death in determining if the treatment arm performs better than the control arm.

RMT-IF is defined as the net average time those in the study drug arm spend in a more favourable state than those in the con-

trol arm over a pre-specified time window. RMT-IF reduces to the RMST difference if there is only one event e.g. death. Here,

we consider the RMST difference for PFS as well as another measure similar to RMT-IF called the pairwise win time ([11] and

defined in Table 2) and compare them with the continuous win difference, since they all have the same units of time. The

RMST ratio is the ratio of the area under the Kaplan-Meier curve for the treatment arm to that under the control arm, where

the area is calculated up to a common time

Simulations

A total of four scenarios are included and described in Table 4. For each scenario, we simulate 1000 trials with time-to-event da-

ta for 100 patients in the control arm and 100 patients in the treatment arm. Weibull or exponential distributions, with the ex-

ponential distribution being a special case of the Weibull distribution with a shape parameter value of 1, are used to indepen-

dently generate the times to progression and death. The reference time for each patient is the time the patient is randomized to

the study and the patient is followed until death, drop out or the end of study. In our simulations, we assume that all patients

enter the study at the same time and there is no accrual time. We simulated censoring times in two ways:

1) Random Censoring: Censoring times are generated from an exponential or Weibull distribution with varying parameters to

achieve different levels of censoring. An exponential distribution is used for censoring when the distribution used to generate

the time to  event  is  exponential  and a  Weibull  distribution is  used for  censoring when the  distribution used to  generate  the

time to event is Weibull.

2) Administrative Censoring: Censoring is generated by a fixed upper limit on follow-up time.

With either type of censoring, the event of death is observed only if the time of death is earlier than the censoring time. The

event of progression is observed only if the time to progression is earlier than either the censoring time or the time of death.

We allow observation of follow-up time after a disease progression event, but not after either death or censoring. Patients who

have neither progression nor death before the time of censoring are followed up to the censoring time.

In each of the 1000 simulations, we then create 10,000 pairs of control and treatment arm patients and determine in how many

pairs the treatment arm wins compared to the control arm (and the time advantage for treatment) and in how many pairs the

treatment arm loses compared to the control arm (and the time disadvantage for treatment), to calculate the WR, the CWR and

the CWD. We first calculate the WR, the CWR and the CWD when progression is viewed as the primary event and death the se-

condary  event,  and  then  when  death  is  viewed  as  the  primary  event  and  progression  the  secondary  event.  We  estimate  the

mean WR, the mean CWR and the mean CWD as well as the mean win odds and the mean net benefit from the 1000 simula-

tions and provide the 2.5 and 97.5 percentile of the distribution, the bias and the variance for each measure.

By using Weibull distributions for the time to progression and the time to death, we can consider both situations of proportion-

al hazards (PH) and non-proportional hazards (NPH). When the shape parameters in the Weibull distributions for both arms

are the same, the Weibull distributions fulfil the PH assumption. When the shape parameters in the Weibull distributions are
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different for the treatment and control arms, the Weibull distributions do not fulfil the PH assumption, and we create NPH sce-

narios and estimate the mean values for the WR, CWR, CWD, win odds and net benefit.

In addition, we estimate the mean RMST ratio and mean RMST difference from the PFS curves for the two arms and the pair-

wise win time for all four scenarios. Both the 2.5 and 97.5 percentile of the distribution for the RMST ratio and difference and

pairwise win time are provided.

Simulations for the WR, CWR, CWD, net benefit, win odds, RMST ratio and RMST difference and pairwise win time were car-

ried out using SAS and replicated in R in most cases. Codes for these simulations are attached in the Appendix.

Table 4: Parameters associated with the Different Distributions/Scenarios

Scenarios Distribution Parameters Resulting
Hazard Ratio

(1) time to PD, death and
censoring from

exponential distributions
with the same HR for PD

and Death (PH case)

Treatment PD ~ exp with hazard rate 0.06 (mTime=11.6)Death
~ exp with hazard rate 0.03 (mTime=23.1)Censoring ~ exp with

hazard rate 0.0005

Death :
0.5PD: 0.5

Control PD ~ exp with hazard rate 0.12 (mTime =5.8) Death ~
exp with hazard rate 0.06 (mTime=11.6) Censoring ~ exp with

hazard rate 0.0005

(2) time to PD, death and
censoring from

exponential distributions
with opposing HRs for PD

and Death (PH case)

TreatmentPD ~ exp with hazard rate 0.37 (mTime=1.9)Death ~
exp with hazard rate 0.03 (mTime=23.1)Censoring ~ exp with

hazard rate 0.0005

Death :
0.5PD: 2.64

Control PD ~ exp with hazard rate 0.14 (mTime= 5)Death ~ exp
with hazard rate 0.06 (mTime=11.6)Censoring ~ exp with

hazard rate 0.0005

(3) time to PD, death and
censoring from Weibull

distributions with the
same shape but different
scale parameters and the

same HR for PD and
Death (PH case)

Treatment PD ~ Weibull with shape parameter 2 and scale
parameter 16.67 (mTime=13.9)Death ~ Weibull with shape

parameter 2 and scale parameter 33.34 (mTime= 27.8
)Censoring ~ Weibull with shape parameter 2 and scale

parameter 2000

Death :
0.25PD: 0.25

Control PD ~ Weibull with shape parameter 2 and scale
parameter 8.33 (mTime=6.9)Death ~ Weibull with shape

parameter 2 and scale parameter 16.67 (mTime=13.9 )Censoring
~ Weibull with shape parameter 2 and scale parameter 2000

(4) time to PD, death and
censoring from Weibull

distributions with different
shape and scale parameters

(NPH case)

Treatment PD ~ Weibull with scale parameter 1.2 and shape
parameter 16.67 (mTime=12.3)Death ~ Weibull with shape

parameter 1.2 and scale parameter 33.34 (mTime=24.6
)Censoring ~ Weibull with shape parameter 1.2 and scale

parameter 2000

Not constant
over time

ControlPD ~ Weibull with shape parameter 1 and scale
parameter 8.33 (mTime=5.8)Death ~ Weibull with shape

parameter 1 and scale parameter 16.67 (mTime=11.6 )Censoring
~ Weibull with shape parameter 1 and scale parameter 2000
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~: distributionexp: exponential distribution mTime: median time in months and units of hazard rate is per

monthexp(λ) : f(t) = (1/ λ) exp( t/ λ)Weibull (λ, k) : f(t) = ( k/ λ) (t/ λ)
k-1 

exp (- (t/ λ)
k 

)

Results

For the results presented below, we used the random censoring approach. In general, the results for the WR match closely for

the two cases of censoring (random and fixed (administrative) censoring) when the percentage of pairs in the tied category is

low and match closely for the CWR when the percentage of pairs in the right censored category is low (see Section 4.1.3 for de-

tails).

Scenario 1: Exponential distribution is used for time to PD, death and censoring and the
HRs for PD and death are the same

Relationship between HR, win ratio, and RMST ratio under PH

The HR in our simulations is 0.5 for both PD and death and hence for PFS (see Note 1 in Appendix). This implies that patients

in the treatment arm progress later and survive longer than those in the control arm. The exponential distributions used and

the hazard rates  assumed for  PD,  death and censoring are  presented in  Table  4,  Scenario  1,  and the  results  can be  found in

Table 5, Scenario 1.

In this case (Table 5, Scenario 1), we observe that the WR is close to the reciprocal of the HR for PFS both when PD is priori-

tized and when death is prioritized, since the HRs for PD and death are the same and PH is fulfilled. The win odds are close to

the WR for both cases, since the percentage of ties is low. The values for net benefit when PD is prioritized and when death is

prioritized are close to each other since the HRs for PD and death are the same. We observe that when the event rates in the ex-

ponential distributions used to model the time to PD and death are low, the RMST ratio for PFS is close in value to the recipro-

cal of the HR for PFS [12] and to the WR when PD is prioritized. The RMST difference from the PFS curves is smaller than the

CWD when PD is prioritized. Since the time to PD is considered in the calculation of PFS (PFS=min(PD, death)) even for sub-

jects who die later, we expect the RMST difference from the PFS curves to be close in value to the CWD when PD is prioritized.

However, they are different measures of the treatment effect as one measures the time to the first event while the other is based

on prioritized outcomes, and they need not produce the same value. The pairwise win time estimates the time in favor of treat-

ment considering PD and death as the two states. In this scenario, the treatment prolongs the time to both PD and death.

Hence, the pairwise win time generally has a positive component for the time in favor of treatment from both PD and death.

Thus, in this scenario, the pairwise win time is larger than the CWD both when PD is prioritized and when death is prioritized.

Relation between win ratio and CWR under PH

For  Scenario  1,  where  exponential  distributions  are  used  to  model  the  time to  PD and death  with  the  same HR for  PD and

death, it is found that the CWR is equal to the square of the WR when PD is prioritized (Figure 1 and Appendix for derivation).

The result also holds for a) when death is prioritized and b) when administrative censoring is applied, if the percentage of right

censored cases is low (data not shown).
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Figure 1: Relation between WR and CWR using exponential distributions to model the time to PD and death for different HRs

(same HR for PD and death)

Under PH: impact of percentage of tied cases on the WR and impact of percentage of right
censored cases on the CWR

Figure 2 shows how the WR and CWR are impacted when the percentage of tied cases and the percentage of right censored cas-

es respectively increase. This is shown in the specific case when exponential distributions are used to model the time to PD and

death for the treatment and control arm with the same HR for PD and death of 0.5. An exponential distribution is used to mod-

el censoring (the hazard rate for censoring is changed from 0.0005 to 0.01 per month), and PD is prioritized. The WR estimates

are not impacted much with an increase in censoring for this PH scenario involving exponential distributions although the un-

certainty of the estimate becomes larger with increasing censoring, as noted in [5] for their scenario a). For the CWR, there is a

reduction in value as the percentage of right censoring increases.  This is  due to selective censoring of the treatment arm pa-

tients who tend to have longer time to event values than the control arm patients. In this scenario based on a HR of 0.5, patients

in the treatment arm are winning twice as often as they lose and thus are more likely to be censored. As the HR gets closer to 1,

the number of right censored cases decreases for a similar percentage of ties, and with it, its impact on the CWR decreases. We

show the impact of right censoring on power for the CWR and CWD in Section 4.5.
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Figure 2: Relation between WR and percentage of tied cases and between CWR and percentage of right censored cases using ex-

ponential distributions to model the time to PD and death

Scenario 2: Exponential distribution is used for time to PD, death and censoring with HR
for progression and death in opposing directions

Following Dong et al.,  2020 [13], we set the HR for PD to 2.64 and the HR for death to 0.5 giving a HR for PFS of 2 for the

hazard rates  shown in the reference.  This  hypothetical  scenario implies  that  patient  progress  faster  but  survive longer  in the

treatment arm than in the control arm. The exponential distributions used and the hazard rates assumed for PD, death and cen-

soring are presented in Table 4, Scenario 2, and the results can be found in Table 5, Scenario 2.

The PFS curves for the control and treatment arm satisfy the PH assumption. In this case where the HRs for PD and death are

in opposite directions, the WR is close in value to the reciprocal of the HR for PFS when PD is prioritized, and is close in value

to the reciprocal of the HR for death when death is prioritized (Table 5, Scenario 2). The win odds are close in value to the WR

when PD is prioritized and when death is prioritized, since the percentage of ties is low. The net benefit when PD is prioritized

and when death is prioritized are in opposite directions, as expected in this case of opposing HRs for PD and death. The CWR

is close to 1 when PD is prioritized, which means that the treatment wins by as much time as it loses, and it is ~4.1 when death

is prioritized, which means that the treatment wins by around four times as much time as it loses. In this case of opposing HRs

for PD and death, it is difficult to obtain a relation for WR and CWR as was done when the HRs for PD and death are the same.

For this case of PH using exponential distributions with low event rates used to model the time to PD and death, the RMST ra-

tio for PFS is close in value to the win ratio when PD is prioritized. The RMST difference from the PFS curves is smaller than

the CWD when PD is  prioritized.  In this  scenario,  the treatment prolongs death but hastens progression.  Thus,  the pairwise

win time generally has a negative component for the time in favor of treatment for PD and a positive component for the time

in favor of treatment for death. In contrast, for the CWD when death is prioritized, a judgement for win or loss for each pair is

first made based on death and then on progression, if the decision cannot be made based on death. Hence, in this scenario, the

pairwise win time is smaller than the CWD when death is prioritized.

Scenario 3: PH assumption holds for PD and death; time to PD, death and censoring modeled using Weibull
distributions and the HRs for progression and death are the same
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The HR in our simulations is 0.25 (see Note 2 in Appendix) for both PD and death and hence for PFS (see Note 3 in Appendix)

(Table 4, Scenario 3). Thus, patients on the treatment arm progress much slower and survive much longer than those on the

control arm. The Weibull distributions with the same shape parameter in both arms used to model the time to PD, death and

censoring fulfil the PH assumption and are presented in Table 4, Scenario 3, and the results can be found in Table 5, Scenario 3.

We observe that the WR is close to the reciprocal of the HR for PFS both when PD is prioritized and death is prioritized, since

the Weibull distributions used fulfil the PH assumption and since we assume the same HR for PD and death (Table 5, Scenario

3). However, the CWR is not the square of the win ratio in this case of Weibull distributions (Table 5, Scenario 3). The net bene-

fit when PD is prioritized and when death is prioritized are similar in value since the HRs for PD and death are the same, which

also holds true for the win odds. For this case of PH with Weibull distributions, the RMST ratio for PFS is not close in value to

the win ratio when PD is prioritized. The RMST difference from the PFS curves is smaller than the CWD when PD is priori-

tized.  In this  scenario,  the pairwise win time is  greater than the CWD when PD is  prioritized and when death is  prioritized,

since the treatment prolongs the time to both PD and death.

In Scenario 3, we investigated the relation between HR/WR and CWR, CWD under a specific hazard ratio of 0.25 for death and

PD. We performed further simulations with Weibull distributions with various values of the same HR for PD and death and

the same shape parameter in both arms to understand the relation between WR/HR and CWR and CWD. We find that when

Weibull distributions with the same shape parameter in both arms of value greater than 1 are used to model the time to PD and

death with the same HR as the corresponding exponential distributions, 1) the WR is the same, but the CWR and CWD are

smaller  in  value  than  those  for  the  corresponding  exponential  distributions  (Figure  3  shows  the  relation  between  WR  and

CWR), and 2) the percentage of right censored cases is lower, and consequently its impact on the CWR and CWD is lower (da-

ta not shown). The WR is the same and the CWR and CWD are larger in value than those for the corresponding exponential

distributions if Weibull distributions with the same shape parameter in both arms with a value less than 1 are used to model the

time to PD and death with the same HR as the corresponding exponential distributions.

Figure 3: Relation between HR/WR and CWR for exponential and Weibull distributions (with shape parameter=2 for both

arms in one case and =0.5 for both arms in the other case) with the same HR for PD and death and PD is prioritized. For the ex-

ponential distributions, CWR=WR2, as in Figure 1, but CWRWR2 for the Weibull distributions with the same HR for PD and

death as the corresponding exponential distributions and shape parameter in both arms =2 and the shape parameter in both

arms =0.5 respectively. The WR=1/HR in all cases since PH is fulfilled.

Scenario 4:  Weibull  distributions with different shape and scale  parameters  and thus PH assumption does
not hold

The Weibull distributions with different shape parameters in the two arms used to model time to PD, death and censoring do
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not fulfil the PH assumption and are presented in Table 4, Scenario 4, and the results can be found in Table 5, Scenario 4.

Example PFS curves for this case from one simulation are shown in Figure 4. As shown in Table 5, Scenario 4, in this case of

NPH, the WR when PD is prioritized and the RMST ratio from the PFS curves are not the same as the reciprocal of the HR

from Cox regression for PFS, which is expected. The net benefit when PD is prioritized and when death is prioritized are not

close in value, which is also expected in this case of NPH. The CWR is 5.2 when PD is prioritized and 4.1 when death is priori-

tized, and these values can be interpreted as before. The RMST difference from the PFS curves is smaller than the CWD when

PD is prioritized. In this scenario, the pairwise win time is greater than the CWD when PD is prioritized and death is priori-

tized, since the treatment prolongs the time to both PD and death.

Table 5: Simulation Results for the Scenarios in Table 4

Statistics Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean HR for
PFS (using cox
regression)(2.5
percentile, 97.5

percentile)

0.502 (0.362,
0.670)1/Mean

HR=1.992

2.029 (1.488,
2.711)1/Mean

HR=0.493

0.250 (0.170, 0.339)1/Mean
HR=4

0.444 (0.316,
589)1/Mean
HR=2.252

Results when PD is prioritized

Mean % of Ties 0.37% 0.17% 0% 0.27%

Mean % of
Cases in Right

Censored
Category

0.74% 0.39% 0.01% 0.41%

Mean WR (2.5
percentile, 97.5
percentile)Bias,

Variance

2.049 (1.429,
2.891)0.049,

0.145

0.507 (0.357,
0.702)0.007,

0.008

4.165 (2.809, 6.151)0.165,
0.795

2.619 (1.799,
3.780)0.0006, 0.256

Mean CWR
(2.5 percentile,

97.5
percentile)Bias,

Variance

4.195 (2.289,
7.297)0.195,

1.672

1.024 (0.505,
1.827)-0.010,

0.118

10.723 (5.949,18.680)-0.002,
11.703

5.183 (2.793,
9.042)0.012, 2.678

Mean CWD
(2.5 percentile,

97.5
percentile)Bias,

Variance

9.079 months
(5.309,

13.228)-0.155,
4.220

-0.049 months
(-2.299,

2.560)-0.037,
1.585

8.795 months
(6.821,10.933)-0.001, 1.212

9.645 months
(6.175,13.251)-0.063,

3.316

Mean Win
Odds (2.5

percentile, 97.5
percentile)Bias,

Variance

2.042 (1.429,
2.891)0.042,

0.142

0.508 (0.357,
0.703)0.008.0.008

4.164 (2.809, 6.151)0.164,
0.795

2.610 (1.793,
3.771)-0.008, 0.252

Mean Net
Benefit (2.5

percentile, 97.5
percentile)Bias,

Variance

0.333 (0.177,
0.486)-0.0002,

0.006

-0.331(-0.474,
-0.174)0.002,

0.006

0.602 (0.475, 0.720)0.002,
0.004

0.436 (0.284,
0.581)-0.001, 0.006

Results when Death is prioritized

Mean % of Ties 0.37% 0.17% 0% 0.27%
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Mean % of
Cases in Right

Censored
Category

1.49% 1.46% 0.03% 0.83%

Mean WR (2.5
percentile, 97.5
percentile)Bias,

Variance

2.022 (1.425,
2.852)0.022,

0.138

1.990 (1.416,
2.792)-0.010,

0.134

4.085 (2.820, 5.995)0.085,
0.753

2.298 (1.622,
3.285)0.004, 0.187

Mean CWR
(2.5 percentile,

97.5
percentile)Bias,

Variance

4.162 (2.199,
7.367)0.162,

1.770

4.137 (2.192,
7.358)-0.055,

1.748

11.024 (6.243,19.339)-0.005,
12.529

4.104 (2.200,
7.365)0.018, 1.783

Mean CWD
(2.5 percentile,

97.5
percentile)Bias,

Variance

16.112
months(8.802,
23.617) -0.431,

14.628

16.050
months(8.792,
23.580)-0.493,

14.631

14.685
months(11.305,18.085)-0.006,

3.262

14.435 months
(8.173, 20.709)
-0.144, 10.416

Mean Win
Odds (2.5

percentile, 97.5
percentile)Bias,

Variance

2.016 (1.422,
2.824)0.016,

0.136

1.987 (1.415,
2.785)-0.013,

0.133

4.085 (2.820, 5.995)0.085,
0.752

2.292 (1.617,
3.275)-0.002, 0.185

Mean Net
Benefit (2.5

percentile, 97.5
percentile)Bias,

Variance

0.327 (0.174,
0.477)-0.006,

0.006

0.321 (0.172,
0.472)-0.012,

0.006

0.596 (0.477, 0.714)-0.004,
0.004

0.383 (0.236,
0.532)-0.0005, 0.006

Other Measures

Mean RMST
Ratio and

difference from
the PFS curves
(2.5 percentile,
97.5 percentile)

Ratio: 1.838
(1.410,

2.355)Difference:
4.558 months
(2.545, 6.727)

Ratio: 0.554
(0.430,

0.710)Difference:
-2.051

months(-3.0352,
-1.142)

Ratio: 1.771 (1.535,
2.042)Difference: 5.066
months (3.675, 6.634)

Ratio: 1.985 (1.543,
2.519)Difference:

5.360 months(3.425,
7.405)

Mean Pairwise
Win time (2.5

percentile, 97.5
percentile)

17.984 months
(10.694, 25.556)

13.940 months
(6.785, 21.509)

18.106 months (14.561,
21.611)

16.664 months
(10.344, 23.019)

Scenario 1. Time to PD, death and censoring modeled using exponential distributions with the same HR for
PD and death (the PH assumption holds: HR for PD and death is 0.5)Scenario 2. Time to PD, death and

censoring modeled using exponential distributions with opposing HRs for PD and death (the PH assumption
holds: HR for PD is 2.64 and for death it is 0.5)Scenario 3. Time to PD, death and censoring modeled Weibull

distributions with the same shape parameters but different scale parameters for the control and treatment
arms (the PH holds: HR for PD and death is 0.25)Scenario 4. Time to PD, death and censoring modeled

Weibull distributions with different shape and scale parameters for the control and treatment arms (the PH
assumption does not hold)A hazard rate of censoring of 0.000000005 for exponential distributions or the same

value for the scale parameter in the Weibull distribution for censoring was used to obtain the true value for
CWR and CWD to estimate bias
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Figure 4: PFS curves for treatment and control arm using Weibull distributions to model the time to PD and death (NPH case)

(example of 1 simulated curve).

Impact of Right Censoring on Power for the CWR and CWD

We studied  the  impact  of  right  censoring  on power  for  the  CWR and CWD for  the  four  scenarios  in  Sections  4.1  to  4.4  by

changing the hazard rate or parameter for censoring. There are limitations in these simulations because the bootstrapping pro-

cedure used to obtain the confidence intervals for each simulation could be performed only a 100 times due to computational

limits (with 100 simulations and 100 patients in each arm and 100 replicates for each simulation, there are 108 observations in

the bootstrapping data set). However, the results (Table 6 and Appendix Table 3) show that for the four scenarios studied, the

power remains high in general for the CWR even as the percentage of right censoring increases. Further, the CWD estimation

is affected when the right censoring percentage reaches >20%. Note that our code also allows the estimation of power for the

WR, net benefit and win odds for different parameters for censoring.

Table 6: Power for Detecting Differences in CRW and CWD when PD is prioritized and death is prioritized for Scenario 1 with

time to PD, death and censoring from exponential distributions (the other 3 scenarios are shown in Appendix Table 3).

Scenario 1

Hazard Rate for
Censoring and
percentage of

Right Censoring
when PD is
prioritized

Power for CWD
when PD is
prioritized

Power for CWR
when PD is
prioritized

Hazard Rate for
Censoring and
percentage of

Right Censoring
when death is

prioritized

Power for
CWD when

death is
prioritized

Power for
CWR when

death is
prioritized

0.0005, 0.8% 0.005,
7%0.01, 12.4%0.02,

19.1%

94%
83%68%13%

91%
93%92%90%

0.0005, 1.6%
0.005, 13%0.01,

21.7%

92% 67%
34% 89% 90 %87 %

The true values for CWR and CWD were obtained by conducting 1000 simulations with a very low hazard rate for censoring (u-

nit of hazard rate is per month).

Application to Clinical Trial Data
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We estimated the WR and the CWR using data from a Phase III trial of 172 patients with surgically resected non-small lung

cancer randomized to receive radiotherapy with or without adjuvant platinum-based chemotherapy [14]. We analysed the data

from 164 eligible patients, who had a mean follow-up time from randomization of 3.7 years [15]. We use the time to first re-

lapse (PD) and the time to death as the events and calculate the WR and CWR (Table 7).

Note that the HR for PFS is 0.683 but the PFS curves do not satisfy the PH assumption. The results for WR, CWR and CWD in-

dicate that the arm with radiotherapy plus chemotherapy wins 1.8 times as often as it loses to the control arm with radiothera-

py alone, wins by 1.8 times as many days as it loses, and wins by about 205 days compared to the control arm, when PD is prior-

itized. The radiotherapy plus chemotherapy arm wins 1.4 times as often as it loses to the control arm, it wins by 1.4 times as

many days as it loses and wins by about 138 days compared to the control arm, when death is prioritized. Based on the low per-

centage of ties, our simulation results (see Section 4.1.3) suggest that the WR estimate is likely accurate. However, the CWD is

likely not an accurate estimate of the duration of benefit due to the large number of right censored cases. The win odds when

PD is prioritized and when death is prioritized are close in value to the WR in each case, which is expected given the small per-

centage of ties. The IPCW-adjusted WR when PD is prioritized and when death is prioritized are close in value to the unadjust-

ed WR in each case, given the small percentage of ties. However, we still estimated the IPCW-adjusted WR to illustrate that this

can done if the percentage of ties is higher. We also provided the IPCW-adjusted CWR and CWD when PD is prioritized and

when death is prioritized. The net benefit when PD is prioritized and when death is prioritized are of similar positive magni-

tude. In this case of NPH, the RMST ratio from the PFS curves is not equal to the WR when PD is prioritized. The RMST differ-

ence from the PFS curves of ~223 days is slightly larger than the CWD of ~205 days and larger than the pairwise win time of

~182 days.

Table 7: WR, CWR, CWD, Win Odds, Net Benefit using data from an oncology trial

HR for PFS 0.683 (0.491, 0.950)1/Mean HR=1.464

Results when PD is prioritized

% of Ties 2.68%

% of Cases in Right Censored Category 22.08%

Win Ratio 1.815 (1.221, 2.620)*

IPCW Adjusted Win Ratio 1.679 (1.157, 2.428)*

Continuous Win Ratio 1.804 (0.936, 3.519)*

Continuous Win Difference 204.64 (-22.591, 416.105) days*

IPCW Adjusted Continuous Win Ratio 1.707 (0.891, 3.410)*

IPCW Adjusted Continuous Win Difference 206.14 (-43.706, 493.593) days*

Win Odds 1.785 (1.217, 2.542)

Net Benefit 0.282 (0.098, 0.435)

Results when Death is prioritized

% of Ties 2.68%

% of Cases in Right Censored Category 27.98%

Win Ratio 1.436 (0.980, 2.103)*

IPCW Adjusted Win Ratio 1.350 (0.922, 2.012)

Continuous Win Ratio 1.430 (0.790, 2.581)*

Continuous Win Difference 138.435 (-97.176, 354.218) days*
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IPCW-adjusted Continuous Win Ratio 1.402 (0.769, 2.507)*

IPCW-adjusted Continuous Win Difference 135.421 (-112.507, 373.915) days*

Win Odds 1.422 (0.981, 2.048)*

Net Benefit 0.174 (-0.01, 0.344)*

Other Measures

RMST Ratio and Difference from the PFS curves Ratio (95% CI): 1.388 (0.949, 2.124) *Difference (95% CI):
222.96 (-53.406, 499.326) days

Pairwise Win time 182.5 (-70.363, 414.957) days*

* The 95% CI is calculated via bootstrapping

Discussion

The WR is an alternate measure of the treatment effect in the case of a composite endpoint. In this approach, the events that

make up the composite endpoint can be ordered or prioritized.  We have studied the WR and proposed the novel  CWR and

CWD, and considered the properties of these measures using simulations with exponential and Weibull distributions covering

PH and NPH scenarios. We have also estimated the WR, CWR and CWD for an oncology data set. In addition, we have calcu-

lated the net benefit, win odds, RMST ratio and RMST difference and pairwise win time to put our results in context.

For the common oncology composite endpoint of progression-free-survival, defined as the earliest of progression or death, we

have determined the WR when PD is prioritized and when death is prioritized. To simulate the endpoint, we have considered

the case of PH and NPH for the PFS curves. The WR is the reciprocal of the HR for a single time to event endpoint or a com-

posite time to event endpoint with the same HR for all events (e.g. PD and death) if the PH assumption holds. The WR when

PD is prioritized is close in value to the RMST ratio from the PFS curves when exponential distributions are used to model the

time to PD and death and when the event rates are low [12]. When exponential distributions are used to model the time to PD

and death for both the treatment and control arm with the same HR for PD and death, it is found that the CWR is equal to the

square of the WR (see Appendix for Proof). When Weibull distributions are used to model the time to PD and death with the

same HR for PD and death as the corresponding exponential distributions and with the same shape parameter in both arms of

value greater than 1, the WR is the same, but the CWR and CWD are smaller in value than those for the corresponding expo-

nential distributions. Thus, when specific distributions are used to model the time to PD and death, such as exponential and

Weibull  distributions,  with  the  same  HR  for  PD  and  death,  it  is  possible  to  study  the  relation  between  HR,  WR,  CWR  and

CWD. However, when the HRs for PD and death are in opposing directions, no general relation between WR and CWR can be

obtained, and it needs to be studied on a case-by-case basis.

We found that when exponential distributions describe the time to PD and death, which automatically fulfil the PH assump-

tion,  the WR is  close to the reciprocal  of  the HR for PFS when PD is  prioritized and is  close to the reciprocal  of  the HR for

death when death is prioritized. However, when PH is not fulfilled, as expected, the WR is different than the reciprocal of the

HR for PFS, when PD is prioritized. In the case of NPH and in the case of opposing HRs for PD and death, the CWR, CWD,

RMST ratio and difference and pairwise win time can be used as additional measures to the WR to understand the treatment ef-

fect. The RMST difference and the CWD both provide a measure of time gained (or lost) on the treatment arm compared to

the control arm but are not the same measures of the treatment effect as one measures the time to the first event while the other

is based on prioritized outcomes. In the PH scenarios studied, the RMST difference provided a more conservative estimate than

the CWD of the time gained or lost on the study drug. Although these measures of the treatment effect are estimated in differ-

ent ways, they were close in value in most cases we examined. We provided a third measure calculated in months or days, the
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pairwise win time, which estimates the time in favor of treatment considering PD and death as the two states. We also provided

results for the net benefit and win odds for all the scenarios. The win odds were very close in value to the WR in the cases we ex-

amined since the percentage of ties was low. These measures could complement the WR in understanding the results.

We also simulated the censoring for PFS in two different ways to mimic random censoring and administrative censoring. Us-

ing these  censoring methods,  we obtain very  similar  results  in  general  for  the  WR if  the  percentages  of  ties  is  low.  We have

shown that the WR is stable however even if the percentage of ties increases when exponential distributions are used to model

the time to PD and death. Other work has also shown that in general,  as the percentage of ties increases, the accuracy of the

WR decreases and an IPCW-adjusted WR gives an unbiased estimate of the treatment effect (5). We obtain similar values for

the  CWR  and  CWD  using  the  two  censoring  methods,  if  the  percentage  of  right  censored  cases  is  low.  We  estimated  the

IPCW-adjusted WR, CWD and CWR to adjust for censoring for our example with data from an oncology trial. The CWR like

the WR can be affected by censoring, leading to several ties. We have shown that right censoring impacts the CWR more than

the WR. However, compared to the CWD, the CWR maintains the power even when the percentage of right censoring is high

(example 20%) in the scenarios we examined. The utility of these measures should be further explored and validated in larger

data sets from cancer trials.

Besides  the WR, other  prioritized comparisons include the Finkelstein-Schoenfeld method and the net  benefit;  note  that  the

Finkelstein-Schoenfeld statistics differ from the net benefit estimate only by a constant (see Table 2 of [16] for a summary of

the tests), and thus should result in the same P-values. The WR, net benefit, win odds, Finkelstein-Schoenfeld test all fall under

the framework of the generalized pairwise comparisons methods. In general, in this framework, the difference in endpoints (Y-

X) (intervention arm - control arm) can be compared to a threshold of clinical relevance Δ. For a single endpoint, if (Y > X +

Δ), the pair is counted as a win and if (X ≥ Y + Δ), the pair is counted as a loss[17]. Otherwise, the pair is a tie. In the case of

censoring, the pair is counted as uninformative as it might not be possible to compare the difference to a threshold. When there

are several endpoints, the endpoints are prioritized based on clinical relevance [17]. The endpoint with highest priority is anal-

ysed first, and neutral and uninformative pairs are analysed based on the endpoint of lower priority. Our approach is a little dif-

ferent and with the CWR and CWD, for prioritized time to event endpoints, we obtain a measure of the length of time the treat-

ment arms wins by to the length of time it loses by with respect to the control arm. Thus, these new measures give us an idea of

how much benefit in terms of time the study drug provides to the patient compared to the control, and may help doctors and

payers better understand the effect of the study drug.

Appendix

Relation between win ratio (WR) and continuous win ratio (CWR) for exponential distributions:

The WR was introduced in Pocock et al. [6]. Consider the case where patients are to be compared by two prioritized outcomes

i.e. patients are first compared with respect to the first priority outcome and are compared with respect to the second outcome

only if the comparison of the highest priority outcome does not result in a win or loss. If a pair of patients is randomly picked,

where one is from the treatment arm and the other is from the control arm, the WR is the ratio of the probability that a patient

from the treatment arm wins to that a patient in the control arm wins. A WR >1 implies that the treatment is beneficial. Mathe-

matically this can be defined as follows.

Let,

              T       = time to event for treatment arm

              C       = time to event for control arm
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and

              p(t) = win probability for treatment arm

              p(c) = win probability for control arm

Then the WR is defined as

In  this  paper  we  are  introducing  an  extension  to  the  win  ratio  measure  which  we  are  calling  the  continuous  win  ratio.  We

define this to be the ratio of the number of months the treatment arm wins by when it wins to the number of months it loses by

when it loses. Mathematically, we define this as

Here E(x) represents the expected value, or mean value of the variable x. There is a relationship between WR and CWR.

It can be shown for the special case that T and C follow exponential distributions with hazard rates of λT and λC respectively,

that

So, with T and C exponential,

The last equality following from the exponential distributions having proportional hazards.

Continuous Win Ratio Assuming Exponential Distributions for PD and Death and the Same HR for PD and
Death and Assuming Administrative Censoring (PH Case):

We consider the case where the PH assumption is fulfilled (exponential distributions to model PD and death for both the treat-

ment and control arm). The censoring is based on a fixed follow-up of 120 months. In this case, we provide the hazard ratio

(HR) for PFS and the WR and the CWR when PD is prioritized and when death is prioritized. The HR in our simulations for

the proportional hazards case is 0.5 for both PD and Death and hence for PFS. The hazard rates for PD are 0.12 (median time

of 5.8 months) and 0.06 per month (median time of 11.6 months) in the control and treatment arm respectively and for death

0.06 (median time of 11.6 months) and 0.03 per month (median time of 23.1 months) in the control and treatment arm respec-

tively.
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Appendix Table 1: WR and CWR assuming exponential distributions for PD and death and the same HR for PD and death

and assuming administrative censoring (PH case)

Mean HR for PFS (using cox regression)(2.5 percentile, 97.5
percentile) 0.508 (0.375, 0.661)1/ Mean HR=1.969

Results when PD is prioritized

Mean % of Ties 0%

Mean % of Cases in Right Censored Category 0.69%

Mean Win Ratio (2.5 percentile, 97.5 percentile) 2.023 (1.453, 2.807)

Mean Continuous Win Ratio (2.5 percentile, 97.5 percentile) 4.045 (2.261, 6.679)

Mean Continuous Win Difference (2.5 percentile, 97.5 percentile) 8.938 (5.358, 12.786) months

Mean Win Odds (2.5 percentile, 97.5 percentile) 2.023 (1.453, 2.807)

Mean Net Benefit (2.5 percentile, 97.5 percentile) 0.330 (0.185, 0.475)

Results when Death is prioritized

Mean % of Ties 0%

Mean % of Cases in Right Censored Category 2.75%

Mean Win Ratio (2.5 percentile, 97.5 percentile) 2.014 (1.474, 2.806)

Mean Continuous Win Ratio (2.5 percentile, 97.5 percentile) 3.987 (2.217, 6.734)

Mean Continuous Win Difference (2.5 percentile, 97.5 percentile) 15.590 (9.010, 22.651) months

Mean Win Odds (2.5 percentile, 97.5 percentile) 2.014 (1.474, 2.806)

Mean Net Benefit (2.5 percentile, 97.5 percentile) 0.328 (0.192, 0.475)

Other Measure

Mean RMST Ratio and Difference from PFS Curves (2.5 percentile,
97.5 percentile)

Ratio: 1.830 (1.437, 2.336)Difference:
4.559 (2.736, 6.586) months

Appendix Table 2: Calculation of the win ratio and continuous win ratio assuming death is prioritized over progression. An al-

gorithm following similar logic can be used when progression is prioritized over death.

Win ratio Continuous win ratio

If both the control
and treatment arm
patient in the pair

die

The winner is the one who dies later (flag=1 if
the treatment arm patient dies later than the

control arm patient and 0 if the treatment arm
patient dies earlier).

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (death date of

winner- death date of loser)

If either the control
arm patient or the

treatment arm
patient in the pair
dies but not both

The winner is the one who doesn’t die (flag=1
if the treatment arm patient does not die and 0

if the treatment arm patient dies), assuming
that the patient is followed for a longer period
than the patient who dies. If the patient who

doesn’t die is not followed for a longer period
than the patient who dies, then it needs to be
observed which of the two patients in the pair

progresses first to decide the winner.

For the treatment arm, we calculate
how many months the treatment arm

patient wins or loses by (censoring
date of winner- death date of loser),
assuming that the winner is followed

for a longer period than the loser.
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If neither the
control arm patient
nor the treatment
arm patient in the

pair dies

It needs to be seen as to who progresses first to
decide the winner.

If both the control
and treatment arm
patient in the pair

progress

After considering death, if it cannot be
determined who wins and if both patients in

the pair progress, then the patient who
progresses later wins (flag=1 if the treatment
arm patient progresses later than the control

arm patient and 0 if the treatment arm patient
progresses earlier).

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (progression
date of winner- progression date of

loser)

If either the control
arm or the

treatment arm
patient in the pair
progresses but not

both

After considering death, if we cannot
determine who wins, and only either the
control arm or the treatment arm patient
progresses, then the person who does not
progress wins (flag=1 if the treatment arm

patient does not progress and 0 if the
treatment arm patient progresses), assuming

that the patient is followed for a longer period
than the patient who progresses. If the patient

who doesn’t progress is not followed for a
longer period than the patient who progresses,

we declare a tie (we assign flag=0.5).

For the treatment arm, we calculate
how many months the treatment arm
patient wins or loses by (max(PFS date

or censoring date of winner)-
progression date of loser), assuming
the winner is followed for a longer

period than the loser. If not, we declare
a tie, and we assign the number of

months to both arms to be 0.

If neither the
control arm nor the

treatment arm
patient in the pair

progresses

After considering death, if we cannot
determine who wins, and neither the control

arm nor the treatment arm patient progresses,
then we declare a tie (we assign a flag=0.5).

We assign the number of months to
both arms to be 0.

The win ratio is the sum of flag=1 divided by
sum of flag =0, considering all control arm and

treatment arm pairs

The continuous win ratio is the sum of
months where flag=1 divided by the

sum of months where flag=0,
considering all control arm and

treatment arm pairsThe continuous
win difference is the sum of months

where flag=1 minus the sum of
months where flag=0, considering all
control arm and treatment arm pairs.

This result must be divided by the
number of pairs.

Appendix Table 3: Power (shown in bold) for Detecting Differences in CRW and CWD when PD is prioritized and death is pri-

oritized

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CWD and CWR when PD is prioritized

CWD (hazard rate or
parameter for

censoring, percent of
right censoring,

power)

0.0005, 0.8%, 94%
0.005, 7%,

83%0.01, 12.4%,
68%0.02, 19.1%,

13%

0.0005, 0.38%,
95%0.01, 6.9%,

88%0.02, 11.4%,
80%0.05, 20%,

61%

0.0005, 0.01%, 96%
0.01, 3.2%, 89%0.02,
10.8%, 68%0.0333,

21.1%, 6%

0.0005, 0.44%,
92% 0.01, 10.6%,
76%0.02, 18.4%,

22%
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CWR (hazard rate or
parameter for

censoring, percent of
right censoring,

power)

0.0005, 0.8% , 91%
0.005, 7%,

93%0.01, 12.4%,
92%0.02, 19.1%,

90%

0.0005, 0.38%, 95%
0.01, 6.9%,

84%0.02, 11.4%,
78%0.05, 20%,

58%

0.0005, 0.01%, 94%
0.01, 3.2%, 94%0.02,
10.8%, 90%0.0333,

21.1%, 85%

0.0005, 0.44%,
91% 0.01, 10.6%,
94%0.02, 18.4%,

92%

CWD and CWR when Death is Prioritized

CWD (hazard rate or
parameter for

censoring, percent of
right censoring,

power)

0.0005, 1.6% , 92%
0.005, 13%, 67%

0.01, 21.7% , 34%

0.0005 ,1.5% , 92%
0.005 , 12.7%, 59%
0.01, 21.1%, 22%

0.0005, 0.04%, 93%
0.005 , 2.4%, 91%0.01,
9.2%, 73%0.02, 26.4% ,

19%

0.0005, 0.87%,
92% 0.005 ,10.4%
85%0.01, 19.2%,

56%

CWR (hazard rate or
parameter for

censoring, percent of
right censoring,

power)

0.0005, 1.6% , 89%
0.005, 13%,90

%0.01, 21.7%, 87
%

0.0005, 1.5%, 89%
0.005, 12.7%, 88 %
0.01, 21.1%, 82 %

0.0005, 0.04%, 91%
0.005, 2.4%, 92 %0.01,
9.2%, 90%0.02, 26.4%,

83%

0.0005, 0.87%,
91% 0.005, 10.4%,
91%0.01, 19.2%,

91%

The true values for the CWR and CWD were obtained by conducting 1000 simulations with a very low hazard rate of censoring

of 0.000005 per month for exponential distributions or a value of 0.000005 for the scale parameter for Weibull distributions.

Power is shown in bold in the above table.

Notes:

Note 1) : The HR for PFS is the ratio of the sum of the hazard rates for PD and death in the treatment arm to that in the control

arm. This is because if X and Y are independent exponential random variables with hazard rate λ1 and λ2 respectively, then

Z=min(X, Y) is an exponential random variable with hazard rate λ1+λ2. In reality, PD and death may not be independent and

this is an approximation for PFS.

Note 2): For two Weibull distributions with the same shape parameter ‘a’ for the treatment and control arms, the hazard ratio

HR is (b0/b1)a, where b0 and b1 are the scale parameter (event rates) of the control and treatment arm respectively.

Note 3): It can be shown that the minimum of two independent Weibull random variables with the same shape parameter is a

Weibull random variable with the same shape parameter and a modified scale parameter (modified event rate). Using this, it

can be shown that the hazard ratio for PFS is λ, assuming that independent Weibull random variables all with distributions hav-

ing the same shape parameter are used to model PD and death in the control and treatment arm respectively and assuming that

the hazard ratio for both PD and death is λ.

Consent to Participate

No human clinical trial was conducted, but data from an old clinical trial have been analyzed. The reference for the data is be-

low.

Piantadosi  S.  Clinical  Trials:  A  Methodologic  Perspective,  4th  Edition,  2024.  Code  and  data  are  publicly  available  at:

https://www.wiley.com/en-us/Clinical+Trials%3A+A+Methodologic+Perspective%2C+4th+Edition-p-9781394195671#downl

oadstab-section
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