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Abstract
In the literature of fuzzy information measures, there exist many well-known parametric and non-parametric measures with their own 
merits and demerits. One important category of these measures is transcendental measures consisting of logarithmic, exponential and 

and MCDM problems. However, trigonometric fuzzy information measures have their own importance for application point of view 
particularly to geometry.
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Introduction

In 1965, Zadeh introduced the concept of fuzzy set and that was extended to measure uncertainty in ambiguous or imprecision 
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In present communication the concept of fuzzy information measure is introduced with a few generalizations. A brief survey of 

generalized measure of fuzzy discrimination in strategic decision making is explained and illustrated with an example. Conclusion 
with an exhaustive list of references is also given in the end.

of µA(X) is to 1, the more x belongs to A. 

membership function and the role of that has well been explained by Singpurwalla and Booker [3] in probability measures of fuzzy 
sets.

Fuzzy set theory, in one or other way, is wide applications in many areas of science and technology e.g. clustering, image processing, 
decision making, pattern recognition, medical diagnosis and multi-criteria decision making, because of its capability to model non-
statistical imprecision or vague concepts. When proposing fuzzy set, Zadeh’s [2] concerns were explicitly centred on their potential 

etc. 

A generalized theory of uncertainty was well explained by Zadeh [4] where he remarked that uncertainty was an attribute of 
information. Before that the path breaking work of Shannon had led to a universal acceptance of the theory that information 
was statistical in nature [1]. However, a perception-based theory of probabilistic reasoning of imprecise or vague concepts was 
explained by Zadeh [5]. 

Some work related to fuzzy uncertainty management for intelligence analysis was reported by Yager, [6] whereas the generalized 

1 2, ,..., nX x x x

, ( )AA x x x X
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[8] version of entropy and discussed the properties of the aging classes based on their generalized entropy.

where                  are the membership values? 

Taking into consideration the concept of fuzzy set, De Luca and Termini [9] suggested that corresponding to Shannon’s [1] proba-

In the present communication a survey of trigonometric fuzzy information measures has been made. In section 2, two sine and 
cosine trigonometric fuzzy information measures are described, while the characterization of a new cosine fuzzy information 
measure is explained in section 3. In section 4, a new tangent inverse trigonometric fuzzy information measures is described along 
with a generalized measure of fuzzy discrimination in section 5. In section 6, application of fuzzy discrimination measure in stra-
tegic decision making is explained and illustrated with numerical example.

(1.1)

(1.2) 

Monte et al.
pointed out that divergence measures were described to compute the discrimination among fuzzy sets that was why these were 
named as fuzzy measures of discrimination. Interestingly, divergence measure is also a measure of dissimilarity which possesses a 
set of important properties and was applied in evaluation of discrimination measure for fuzzy sets. 

Hooda and Jain [14] characterized a sub additive trigonometric measure of fuzzy information of type α and degree β corresponding 
to trigonometric probabilistic entropy studied by Sharma and Taneja [15]. It may be noted that trigonometric measures have their 
own importance in application point of view, particularly, in geometry. 

Fuzzy entropy is a measure of fuzziness of a set which arises from the intrinsic ambiguity or vagueness possessed in the fuzzy set. 

On the same lines many researchers have studied various generalized fuzzy information measures. Hooda, [11] Hooda and Bajaj 
[12] and many other authors introduced and characterized various generalized additive and non-additive fuzzy information 
measures and their applications. Mishra et al. [13] proposed exponential fuzzy measures 

Sine and Cosine Trigonometric Fuzzy Information Measures

First of all we check the validity of the proposed measures (2.1) and (2.2).

two trigonometric fuzzy information measures which have no analogous probabilistic entropies as given below:

Proof:

1
( ) ( ) log ( ) (1 ( )) log(1 ( )) ,

n

A i A i A i A i
i

H A x x x x

( )A ix

1

1( ) log ( ) (1 ( )) ; 0, 1.
1

n

A i A i
i

H A x x

1
1

2
1

( ) (1 ( ))(1) ( ) sin sin 1 (2.1)
2 2
( ) (1 ( ))(2) ( ) cos cos 1 (2.2)

2 2

n
A i A i

i

n
A i A i

i

x xH A

x xH A

(P1).  H1 (A)=0 if and only if A is a crisp set.

1
1

( ) (1 ( ))( ) sin sin 1 0
2 2

n
A i A i

i

x xH AEvidently,                                                                                                                  if and only if either 0A ix or 1 0A ix   rof 

1, 2, , .i n  

It implies H1 (A)=0 if and only if A is a crisp set.

(P2). H1 (A) is maximum if and only if A is the fuzziest set  . ., 0.5A ii e x  for all 1, 2, , .i n
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1 (A) with respect to ,A ix  we have
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Hence  H1 (A) is maximum at 0.5A ix   for  1, 2, , .i n

(2.3)

Hence H1 -
tion. On the same line it can be proved that H2 (A) is a valid fuzzy information measure.

1 1
cH A H A

(2.7)

(P1). H3(A)=0 if and only if A is a crisp set.

1

1

( ) (1 ( ))( ) cos cos ,
( ) 2 2 2

n
A i A i

iA i

x xdH A
d x

2 2
1

2
1

( ) (1 ( ))( ) sin sin ,
( ) 4 2 2

n
A i A i

iA i

x xd H A
d x

which vanishes at 0.5A ix .

,A ix we get

which is less than zero (< 0) at 0.5A ix .

(P3). Let A* be sharpened version of A, which means that

Further from (2.3) we see that H1(A) is an increasing function of A ix  in the region 0 0.5A ix  and H1(A) is a decreas-
ing function of  A ix  in the region 0.5 1A ix .

(i)    *
*

1 1i A iA
x x H A H A  in  0, 0.5  

Since H1(A) is an increasing function of A ix  in the region 0 0.5A ix  and H1(A) is a decreasing function of A ix  in 
the region 0 0.5A ix , therefore 

if *0 0.5, A i i A iA
x x x  for all  1, 2, , .i n

and if *0.5 1, A i i A iA
x x x  for all 1, 2, , .i n  .

(ii)   *
*

1 1i A iA
x x H A H A  in 0.5,1 . 

*
1 1H A H A

(P4).

where Ac is complement of A obtained by replacing 
A ix  by 1 A ix .

By considering a concave function sin ,  0,1 x x
and proved its validity:

3
1

( ) sin ( ) sin (1 ( ))
n

A i A i
i

H A x x

(2.4)

(2.5)

(2.6)
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which is less than zero (<0) at 0.5A ix .

which vanishes at μA (xi) = 0.5.

μA (xi), we get

Hence H3 (A) is maximum at μA (xi) = 0.5  for 1, 2, , .i n  

if *0 0.5, A i i A iA
x x x  for all 1, 2, , .i n  

H3 (A) is an increasing function of μA (xi) in the region  0 0.5A ix  and H3 (A)  is a decreasing function of μA (xi) in the region 
0.5 1A ix .

(P3). Let A* be sharpened version of A, which means that

And if *0.5 1, A i i A iA
x x x  for all 1, 2, , .i n .

Since H3 (A) is an increasing function of μA (xi) in the region 0 0.5A ix  and H3 (A) is a decreasing function of μA (xi) 
in the region 0.5 1A ix . 

Hence (2.9) and (2.10) together give

(i) *
*

3 3i A iA
x x H A H A  in 0, 0.5     (2.9) 

*
*

3 3i A iA
ii x x H A H A  in 0.5,1 .    (2.10) 

(P4).

where Ac is complement of A obtained by replacing μA (xi) by 1 A ix .

Hence H3

2
23

2
1

( ) sin ( ) sin (1 ( )) ,
( )

n

A i A i
iA i

d H A x x
d x

*
3 3H A H A

3 3
cH A H A

4
1

( ) sin ( ) sin (1 ( )) sin .
n

A i A i
i

H A x x

H3 (A) with respect to μA (xi), we have

It may be noted that (2.11) reduces to (2.7) when              and reduces to (2.1) , when 
2

.

Evidently,  3
1

( ) sin ( ) sin (1 ( )) 0
n

A i A i
i

H A x x  if and only if either 0A ix  or 1 0A ix  for  
1, 2, , .i n

(P2). H3 (A) is maximum if and only if A is the fuzziest set i.e.,μA (xi) = 0.5 for all 1, 2, , .i n   

It implies H3(A)=0 if and only if A is a crisp set.

3

1

( ) cos ( ) cos (1 ( ))
( )

n

A i A i
iA i

dH A x x
d x

(2.8) 

(2.11) 
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which is a new generalized cosine trigonometric measure of fuzzy information and it reduces to the following fuzzy information 

measure when  
2

6
1

( ) cos ( ) cos (1 ( )) (1 cos ) ,
n

A i A i
i

H A x x

27
1

( ) (1 ( ))( ) cos cos 1 ( ).
2 2

n
A i A i

i

x xH A H A (2.14) 

A New Cosine Fuzzy Information Measure

  H8 (A) is a valid fuzzy information measure.

Let 1 2, , , nX x x x  be a set of universe and A be a fuzzy set in X having membership function  μA (xi

(P1). H8 (A) = 0 if and only if A is a crisp set.

H8 (A) with respect to μA (xi) , we have

Evidently H8 (A) = 0 if and only if either μA (xi) = 0 or 1 0A ix  for 1, 2, , .i n   

(P2). H8 (A) 0.5A ix  for all 1, 2, , .i n  

which reduces to zero when  0.5A i  for all 1, 2, , .i n  

8
1

2 ( ) 11( ) cos
2

n
A i

i

x
H A

n
(3.1)

8

1

2 ( ) 1( ) sin ,
( ) 2

n
A i

iA i

xdH A
d x n

(3.2) 

which is less than zero when 0.5A ix  for all i. 

2 2
8

2
1

2 ( ) 1( ) cos ,
( ) 2

n
A i

iA i

xd H A
d x n

Hence  H8 (A) is maximum when 0.5A ix  for all 1, 2, , .i n  or A is the fuzziest set.

Further it may be noted that H8 (A) is an increasing function of μA (xi) in the region  0 0.5A ix  and H8 (A) is a 
decreasing function of μA (xi) in the region 0.5 1A ix . 

Another generalized sine trigonometric measure of fuzzy information is

5
1

( ) sin ( ) sin (1 ( )) sin( ) .
n

A i A i
i

H A x x

In particular when 0,  (2.12) reduces to (2.11) and reduces to (2.7) when 0  and .  

(2.12) 

(2.13) 
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H8 (A
c) = H8 (A), where Ac  is complement of A.

(P4). It is evident that if A ix  replacing by 1 A ix  for all 1, 2, , .i n , then

Proof: Let us separate X into two parts X1 and X2, where

and 

It implies that for all 1ix X , A i B ix x   and for all 2ix X ,  A i B ix x . 

 Let 1 2, , , nX x x x -
course X. Let i A iA x x  and i B iB x x  satisfying either A B  or B A , then the following holds: 

8 8 8 8    H A B H A B H A H B (3.5) 

1 1x X : A BX x x

2 2x X : B A .X x x

From (3.1), we have

8
1

2 ( ) 11( ) cos
2

n
A B i

i

x
H A B

n

21

2 ( ) 1 2 ( ) 11 cos cos .
22

ii

B i A i

x X x X

xx
n

(3.6)

8
1

2 ( ) 11( ) cos
2

n
A B i

i

x
H A B

n

21

2 ( ) 1 2 ( ) 11 cos cos .
22

ii

A i B i

x X x X

xx
n

(3.7)

Corollary 1: Let A be a fuzzy set on X and   be its complement, then

Adding (3.6) and (3.7), we get

8 8 8 8    H A B H A B H A H B  . Hence this theorem is proved.

8 8  cH A H A (3.8)

(P3). Let A* be sharpened version of A, then

(i) *
*

8 8i A iA
x x H A H A  in 0, 0.5     (3.3) 

(ii) *
*

8 8i A iA
x x H A H A  in 0.5,1 .    (3.4) 

*
8 8H A H A

Hence from (3.3) and (3.4) we can conclude that 

and 
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Note: 

2
9

1
( ) tan tan tan , 3.

2 ( ) 2 (1 ( )) 2

n

i A i A i

H A n n
n x n x n

(4.1)

0A ix  or 1A ix  i.e. A is a crisp set.

 Let 1 2, , , nX x x x  be a set of universe and A be a fuzzy set in  having membership function A ix

1

1

2( ) tan ( ) (1 ( )) ; 0, 1
41

n

A i A i
i

H A x x (4.2)

(P1). 0H A  if and only if A is a crisp set.

Proof: To prove that the measure (4.2) is a valid measure, we shall show that it is satisfying the four properties (P1) to (P4). 

If 0A ix  or 1A ix , 0H A  .

Conversely, 0H A  , then 

Hence  0H A  if A is crisp set, . . 0A ii e x  or 1A ix   for 1, 2, , .i n  

1

1

2 tan ( ) (1 ( )) 0
41

n

A i A i
i

x x

1or tan ( ) (1 ( )) 0
4A i A ix x

or ( ) (1 ( )) 1.A i A ix x

0H A  if and only if A is a crisp set, . . 0A ii e x  or 1A ix   for 1, 2, , .i n  

(P2). H A  is maximum if and only if A is the fuzziest set, . . 0.5A ii e x  for 1, 2, , .i n  

A ix , we have

A ix , we have 

11

2
1

( ) ( ) (1 ( ))2
( ) 1 1 ( ) (1 ( ))

n
A i A i

iA i A i A i

dH A x x
d x x x

(4.3)

Tangent Inverse Trigonometric Fuzzy Information Measure
Prakash and Gandhi [9] proposed the following tangent fuzzy information measure:

8 8  c cH A A H A A (3.9) 
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Here two cases arise:

Case1. When 0 1 , we have 
2

2 0
A i

d H A
d x

 (-ve) 

Case2. When 1 , we have 
2

2 0
A i

d H A
d x

 (-ve)  

From (4.4) and (4.5), we have 
2

2 0
A i

d H A
d x

 (-ve).

Hence Hα(A) is maximum at  0.5A ix  for all 1, 2, , i n

 For maxima, 0
A i

dH A
d x

 

It implies 
11 1  0A i A ix x  

 1 0A i A ix x or

 0.5A ix or

(P3). From (4.3), we have 0
A i

dH A
d x

 (+ve) in the region 0 0.5A ix

Hence H A  is an increasing function in the region 0 0.5A ix  

Similarly, from (4.3) 0
A i

dH A
d x

 (-ve) in the region 0 0.5A ix  

Hence H A  is decreasing function in the region 0 0.5A ix
Let  A* be the sharpend version of A, then

(i)  *
*

i A iA
x x H A H A  in  0, 0.5    

(ii) *
*

i A iA
x x H A H A   in 0.5,1 .   

*H A H A

Particular Case: When 1, (4.2) reduces to De Luca and Termini  fuzzy information measure [9].

(P4). Let Ac be a complement of A.

cH A H A

Since H A

2 22

11

112

22 2

1 ( ) (1 ( )) ( 1) ( ) (1 ( ))

( ) (1 ( )) 2 ( ) (1 ( ))

( ) (1 ( ))( ) 2
( ) 1 1 ( ) (1 ( ))

A i A i A i A i

A i A i A i A i

A i A i

A i
A i A i

x x x x

x x x x

x xd H A
d x x x1

n

i

(4.4)

(4.5)

(4.6)

(4.7)
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(i) Non negativity . . ( , ) 0i e I A B ,

(ii) ( , ) 0,I A B  if  A = B,

(iii) ( , ) 0I A B  is convex function in ]0,1[  ,

(iv) ( , ) 0I A B  should not change, when ( )A ix  is changed to 1 ( )A ix  and ( )B ix  is changed to 1 ( )B ix

 Let 1 2, , ......, nX x x x , , ( ),A B FS X  then

where 0, 1,  is a valid fuzzy discrimination measure

1 1 1

1

2( , ) tan ( ) ( ) (1 ( )) (1 ( ))
41

n

A i B i A i B i
i

I A B x x x x (5.2)

Proof:
fuzzy discrimination. 

informatics by Poletti et al. [21] and Fan et al. [22]. 

Bhatia and Singh [19] also discussed in image thresholding, while Ghosh et al. [23] applied it in automated leukocyte recognition. 
In this section, the application of the above fuzzy discrimination measure in strategic decision making is proposed and studied.

1 2, , ......, mS S S
1 2, , ......, nl l l

Application of Fuzzy Discrimination in Strategic Decision Making 

is determined by 

(6.2)

1
0 1

min ( , )t j n
I I Y I

(6.3)

Analogous to Bhatia and Singh, [19] Bhandari et al. [20] suggested the simplest measure of fuzzy discrimination as follows:

A Generalized Measure of Fuzzy Discrimination

1

( ) (1 ( ))( , ) ( ) log (1 ( )) log
( ) (1 ( ))

n
A i A i

BP A i A i
i B i B i

xxI A B x x
xx

(5.1)

( , )I A B

jl

, : 1, 2, ......,I iI Y S i m 1, 2, ......,j n

A Y B I ( , )I Y I

(6.1)

It is assumed that (1 )tI t n  determines the minimum value of 0 1
( , )I Y I

1
max ( )

tI ii m
S , let it correspond 

to 1pS p m
tI

pS tI

, ( ) : 1, 2, ......,S iY S S i m

Volume 7 | Issue 1



Annex Publishers | www.annexpublishers.com                    

 
10

 
                             Volume 7 | Issue 1

Journal of Biostatistics and Biometric Applications

1( )I S 2( )I S 3( )I S 4( )I S 5( )I S

1l 0.3 0.6 0.4 0.7 0.2

 2l 0.5 0.3 0.8 0.4 0.7

 3l 0.6 0.7 0.6 0.9 0.4

4l 0.5 0.6 0.3 0.8 0.9

5l 0.4 0.5 0.4 0.2 0.6

Table2:

0.1 0.3 0.5 0.7 0.9

1l 0.0041885 0.0126504 0.0151538 0.0128018 0.0055147

 2l 0.1180805 0.3591652 0.4293109 0.3587822 0.1515919

 3l 0.0694641 0.2131733 0.2591029 0.2216869 0.0964639

4l 0.1421777 0.4548828 0.5662826 0.4871129 0.2079755

5l 0.0745879 0.2263425 0.2704184 0.2262243 0.0957976

Table3: Numerical values of discrimination measure 1
0 1

( , ) j nI Y I   

1l
assessment of the results existing in Table 2 and Table 3 points out that strategy S4

S4 is applied with an input 1l . 

Let m = n = 5

1
0 1

( , ) j nI Y I .

Numerical Illustration

 1( )Y S 2( )Y S 3( )Y S 4( )Y S 5( )Y S

0.3 0.5 0.4 0.6 0.2

Table1: 

in Science and Engineering problems.

et al.

Conclusions 

Prakash et al. [25] also studied new measures of weighted fuzzy entropy and their applications for the study of maximum weighted 
fuzzy entropy principle. Recently, transcendental fuzzy measures of information and discrimination have invited attention of 
researchers and hence, a lot of work in this area of research is in progress.
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