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Abstract
COVID-19 pandemic is a global threat, where the rate of infection with Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), without prevention strategies, increases exponentially, and the spread of the virus 
from person to person is very fast. Fitting for COVID-19 infectious disease counts has received a great deal of 
attention, and modelling the dispersion of COVID-19 infectious disease counts can help measuring the spread of the 
disease in a population and evaluating the intervention. This paper examines the presence and persistence of day-
of-the-week effects in both the mean and dispersion in the number of people who tested positive of COVID-19 
per day in the UK, and estimates the impact of the first national lockdown on the spread of the disease in the 
population. The conditional mean and dispersion parameters of the probability distribution for the daily number of 
people who tested positive of COVID-19 in the UK are fitted with the generalized structural time series (GEST) 
model.
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Background

Time series of infectious diseases represent the counts of event of infection per unit of time (daily, weekly, monthly or quarter-
ly). The most commonly used distribution for analysis of counts is a Poisson where the sample space of the Poisson distribution 
is the set of non-negative integers. However, the Poisson model requires that the mean equals the variance, an assumption that 
is inadequate in the analysis of infectious disease counts as it is shown that infectious diseases exhibit spikes or outbreaks over 
time. To measure these outbreaks, a more flexible distribution is needed. Negative binomial distribution is more flexible than 
the Poisson as it has a dispersion parameter that can vary over time and measures infectious disease outbreaks. The dispersion 
parameter is interpreted by [1] as the degree of clumping in the population, as the population becomes more clumped, the 
variance is expected to be higher than the mean. [2-5] among others, proposed time series models for counts and applied them 
for Poliomyelitis cases in the USA from the year 1970 to 1983 using negative binomial and Poisson distributions and fitted the 
conditional mean to investigate whether or not the incidence of Poliomyelitis has been decreasing since 1970. [6], used the 
negative binomial distribution to model the dispersion parameter as a measurement of a superspreading effect. [7] proposed 
a non-stationary negative binomial model with time-dependent covariates for time series of Enterococcus counts in Boston 
Harbour to evaluate the effects of court-mandated improvements in sewage treatment.

The rational for modelling the time trend with a random walk of order two (RW2) goes back to [11,12] in the analysis of mor- 
tality table in actuaries. Prior to Whittaker-Henderson method, actuaries used Moving Weighted Average (MWA) technique 
for dealing with data near the extremities as de- scribed by [13]. Whittaker-Henderson graduation (smoothing) technique was 
a new and a better method to smooth the data near extremities and has been widely employed by actuaries since then. [14] 
analysed seasonal ad- justed macroeconomic time series using RW2 Whittaker-Henderson method to model the business cycle 
and growth. [15] developed a flexible smoothing with B-splines based on Whittaker graduation (smoothing) technique. Rue 
and Held (2005) used RW2 to model the trend in Gaussian Markov field, The second-order random walk (RW2) model is 
now commonly used for smoothing data and modelling response functions and it is computationally efficient due to the Markov 
properties of the joint (intrinsic) Gaussian density as described by [16].

If the seasonality is present in the data but ignored by the model-building process, the result is likely to be a misspecified model 
which is likely to lead to residual autocorrela- tion of the order of the seasonality. To estimate stochastic seasonality in the mean 
and overdispersion, random seasonality model uses unity factors with levels of data frequency. To allow for a disturbance noise in 
seasonality, the sum of the unit levels follows a random walk process with mean zero and variance σ2

W , [17,18].

  

Figure 1:  Histogram and time series of daily counts of people who tested 

COVID-19 in the UK from 28 Feb 2020 to 6 Jan 2021
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Statistical Modeling
The usual decomposition of time series into four components: baseline, trend, seasonality and white noise, can be thought of 
as a one-dimensional decomposition of the mean parameter of the assumed probability distribution for the observations. 
The proposed model in this article, which is more flexible, uses a two-dimensional decomposition of the parameters of the 
probability distribution function for serially correlated observations, where time series of the mean and dispersion parameters 
of the probability distribution function are decomposed jointly and simultaneously into baseline, trend and seasonality. The 
goal of the two-dimensional decomposition of the observations over time is to extract a signal of information for unobserved 
overdispersion of the observations from the noise, if there is a significant time-varying overdispersion in the data, then the 
residuals from the fitted mean model will have a higher variance than the standard normal distribution if the overdispersion is 
fitted with a constant. A four-dimensional decomposition was developed in 2015 by Djennad et al.

The United Kingdom imposed a national lockdown with coercive measures on 23 March 2020 to bring the rate of transmission 
and infection under control. This prevention strategy brought the rate of infection down in June, July and August 2020 but 
since the mid of September to 6 January 2021 the number of COVID-19 cases were rocketing. The daily number of people 
who tested positive of COVID-19 in the UK from day 28 February 2020 until 06 January 2021 are shown in Figure 1. The 
of Figure 1 presents the frequency distribution of the daily counts which looks highly positively skewed and the left hand of 
Figure 1 presents a time series of the daily counts. The average value of the observations is 9,135.48 people and the variance is 
154,711,307 people, which shows evidence of a higher variance in the data. The data is available at https://coronavirus.data.gov.
uk/details/cases

2.1 Generalized Structural Time Series Model

The time series of number of people who tested positive of COVID-19 across the United Kingdom from day 28 February to 
6th January 2021 were examined using the generalized structural time series model with the Poisson and the negative binomial 
distributions. The natural logarithm of the expected number of people who tested positive over time and the natural logarithm 
of the dispersion vector over time were jointly and simultaneously decomposed into baseline, trend and seasonality.

Let Yt be the daily number of people who tested positive of COVID-19 in the UK from 28 February 2020 to 06 January 2021, 
and D = N BI(µt, σt) where N BI represents the negative binomial type I distribution of the response variable,

where n is the size of United Kingdom population in 2020 estimated at 67,886,011 people at mid year according to UN data 
[https://www.worldometers.info/world-population/uk- population/] and the log(n) is an offset variable, βk is a constant vector 
in the mean and overdispersion parameters, the γk,t represent the time-varying trends in the mean and overdispersion of the 
observations where the trends are extracted with a random walk of order two (RW2), sk,t represent time-varying day-of-the-
week effects in the mean and overdispersion parameters, and bk,t and wk,t are independently distributed disturbance terms 
with mean zero and variances σ2

bk , σ2
wk where bk∼ NT−J 

 
0, σ2 IT−J and ωk ∼ NT−Jk 0, σ2

bk IT−M +1
.
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 Model Estimation
The GEST model defined by equation (2) has distinct sets of parameters: β, γ, s, σ2

e, σ
2

b,  σ
2

W
  where σ2

b and σ2
W are referred 

to as hyperparameters and represent the variances of the normal disturbance vectors bk,t and ωk,t for k = 1, 2 in trend and 
seasonality, where b∼NT−J (0, σ2IT−J ), ω ∼ NT−M+1(0, σ2 IT−M+1).

5.1 Maximum Likelihood Estimation

Maximum likelihood estimation of β, σ2
b and σ2

W is defined by:

denotes the conditional density function of the response vector yt given β, γ and s, and

denotes the log-likelihood function. The extended log-likelihood function in Lee, [19] p227-279, is defined as:

where f (γ, s|σ2
b, σ

2
w ) is the joint density function of γt and st given σ2 and σ2 .  The likelihood f (y|β, γ, s)f (γ, s|σ2

b, σ
2

w) 
is knows as the joint or extended likelihood in hierar- chical generalized linear model [20]. However, the integration of 
(3) is intractable for a non-Gaussian response variable and becomes more difficult when there is more than one random 
effect component, here we have two random effect components γ and s. This integral can be approximated using Laplace 
approximation which gives the following approximative marginal log likelihood:

where  γ̂  and ŝ  are  the  fitted  value  of  γ  and  s  estimated  by  maximising  the  extended likelihood  over  (γ, s)  for  given  (β, 
σ2

b, σ
2

W ),  and  D̂γ,s   is  the  second  derivative  of  the  ex- tended likelihood with respect to (γ, s) evaluated at γ  = γ̂  and 
s = ŝ

Following Appendix B2 and C in [21], the maximization of the extended likelihood in (6), can be achieved by using the GEST 
algorithm described below, which provides posterior mode estimates of the sets of parameters of β, γ, s and by maximizing the 
extended log likelihood for hyperparameters σ2

bk , σ2
wk for k = 1, 2.
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GEST Algorithm for Estimating β, γ, s Given Fitted σ2
b, σ2

w

(A) initialise (θ1, θ2) = (µt, σt), and set initial γk = 0 and sk = 0 for k =1,2.

(B) start the outer cycle to fit each of the distribution parameter vectors θk sequentially until convergence where, θ1 = µt = 
(µ1, µ2, . . . , µT )T, and θ2 = σt = (σ1, σ2, . . . , σT )T, 

(a) start the inner cycle (or local scoring) for each iteration of the outer cycle to fit each of the distribution parameter vectors, 
θk = (µt, σt)

(ii) start the Gauss-Seidel (or backfitting) algorithm

(I) estimate βk by regressing the current partial residuals sk = zk − γk − sk against design matrix Xk using current iterative 
weights Wk.

(II) estimate the hyperparameters σ2
bk and σ2

Wk by maximising their like-lihood function Q, and then estimate γk and sk using 
the equation (γk , sk)

T = 
 
Ak+ Dk

TMk
−1Dk

-1 A (sk, 0k)
T, where 0 is a vector of  zeros of length T,

(iii) end the Gauss-Seidel algorithm on convergence of βk, γk and sk

(iv) update θk and η = g(θk).

(C) end the inner cycle on convergence of θk. end the outer cycle when the global  deviance (= −2 × l) of the estimated model 
converges.

GEST Algorithm for Estimating the Hyperparameters α = (σ2
b, σ2

W )

1. Select starting values for α = (σ2
b, σ

2
W ).

2. Maximize Q over α using a numerical algorithm,  where γ, s given α are obtained before calculating Q in the function 
evaluating Q.

3. Use the maximizing values for α to calculate the maximizing values for γ.
In step [(B).(a).(ii).(II)], the Q function, for a random walk trend and random season- ality model, is given by:

where s  = (∈1, ∈ 2, . . . , ∈T )T,  γ  = (γ1, γ2, . . . , γT )T,  s  = (s1, s2, . . . , sT )T,  Σ−1 = σ−2W,

Σ is a [T x T ] matrix, A is a [2T × 2T ] matrix of  Σ−1,  M  is  a  matrix  diagonal [σ2IT−J , σ2 IT−M+1]  and  D  is  a  matrix  
diagonal  [Dγ, Ds],  where  Dγ  is  a  second  order differencing matrix and Ds is a unit matrix of M levels and size [(T − M 
+ 1) × T ]. The Q function for a random walk trend model, is given by:
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The maximization of Q over γ given α, where α is estimated by the GEST fitting algorithm, is given by solving the 
following equation:

5.2 Effective Degrees of Freedom

The total effective degrees of freedom of the fitted GEST model, df , combines those of the model for µt and σt, given by dfµt 
and dfσt respectively. Hence,

for k = 1, 2, where pk is the length of βk and the dk is the effective degrees of freedom for the fitted random walk trend 
and random seasonality.  Let B =A + DTM−1D and  let  B̂ , Â , M̂ , γ̂, ̂s,  be  the  values  of  B, A, M, γ, s  on  convergence  of  the  
GEST  fitting algorithm.  On convergence, (γ̂, ̂s) = B̂ s.  Hence dk, the effective degrees of freedom used for random walk trend 
and random seasonality model in µt and σt, is given by:

In addition, let B = 
 
Σ−1 + σ−2DTD

 −1 
Σ−1 and let B̂ , Σ̂ , D̂ , γ̂  and σ̂−2 be the values of B, Σ, D, γ  and σb

−2 on 
convergence of the GEST fitting algorithm.  On convergence, γ̂  = B̂ s.  Hence dk, the effective degrees of freedom used 
for random walk trend model in µt and σt, is

As dk is difficult to calculate directly for large T , it can be calculated by setting
∂Q/∂σ2  =  0  giving  on  convergence  d  =  J  + σ̂−2γ̂TDTDγ̂,  for  the  random  walk  trend model, and by setting ∂Q/∂σ2

b = 0 
and ∂Q/∂σ2

W = 0 giving on convergence d = J + M −1 + σ̂−2γ̂TDγ
TDγγ̂ + σ̂w

−2ŝTDs
TDsŝ,  for  the  random  walk  trend  and  

random  seasonality model, using the result ∂   log |xC + F | = tr [(xC + F )−1C], where x is a scalar and C and F are r x r 
matrices (provided |xC + F | /= 0), Hence, for each distribution parameter, dk is calculated using the values of γ̂k , ̂sk, σ̂2

bk , 
σ̂2

wk on convergence of the GEST fitting algorithm.  Note that the formula for the effective degrees of freedom has reciprocals 
σ̂−2

b and  σ̂w
−2.    The  estimates  of  these  variances  are  often  very  small  (see  Table  3),  so  the inverse of these variances is very 
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large with very large effective degrees of freedom. In the random walk of order 2, the fitted trend is a smooth curve with no 
much variability and the variance is very small and inverse is very large, but because the smoothing matrix Dγ is a second order 
differencing matrix, the γ̂TDγ

TDγγ̂  become smaller and it compensates the very large value of the inverse of the variance

Model testing

6.1 Testing for Overdispersion

In the GEST-NBI, σt is modelled with a random walk of order two and random seasonality using a log link, testing the overdis-
persion is performed by testing the null hypothesis H0 : σt = 0 against the alternative H1 : σt  > 0, at 1% significance level.  The 
likelihood ratio test for overdispersion is − 2 time the difference in the fitted log-likelihood of the two models and the asymp-
totic distribution of the LR test statistic has probability mass of 0.5 at zero and a half-χ2(1) distribution above zero see [10].

6.11 Logarithmic Transformation

Anscombe (1950) pointed out that the logarithm transformation of the observations makes the variance independent of the mean 
and Preston (1948) recommended that in a situation where the zero counts are not recorded, transforming the data by logarithm 
transformation it appears approximately normal and make the method of analysis of variance appropriate. If the variance of Y 
is of the form V ar(y) = φµp, where φ >0 is a scale parameter, the standard deviation is proportional to the mean and 
hence the log transformation stabilizes the variance and makes analysis of variance more appropriate. For negative binomial 
distribution, p = 2, so the log (Y ) stabilizes the variance. In the data, there were none zero observations recorded in any day 
from 28 February 2020 to 06 January 2021, so time series of number of people who tested positive of COVID-19 in the UK 
was logarithmical transformed for the analysis of variance. The goodness of fit of GEST- NO model with a fixed standard devi-
ation, log(σt) = β2, and GEST-NO model with a time-varying standard deviation, log(σt) = β2 + γ2,t + s2,t, were compared using 
Akaike information criterion (AIC). The histogram, time  series  of  COVID-19  positive  counts and fitted values of GEST-NO 
model for mean and standard deviation are shown in Supplementary file.

6.2 Testing Normality of Fitted NBI and Poisson Models

Normalized (randomized) quantile residuals of the fitted GEST model are checked using the  detrended  transformed  Owen's  
plot  DTOP  [15] to check the adequacy of the fitted probability distribution function.  If the fitted Poisson distribution is 
shown to be adequate, then the model for overdisperison is not needed and σt = 0. The true normalized (randomized) quantile 
residuals always have a standard normal distribution for any regression type model whatever the original model distribution. 
Hence the fitted normalized (randomized) quantile residuals are al- ways compared to a standard normal distribution making 
interpretation and comparison of the resulting plots (for different original model distributions) easier. Significant depar- tures 
from the model (resulting in significant differences between the residuals and their standard normal distributions, if the model 
is correct) are indicated by the confidence bands not including the horizontal zero line for some value(s) in the DTOP. 
Similarly the DTOP of the fitted residuals provides a guide to model adequacy, if the fitted dis- tribution of the model is 
adequate, then the normalized quantile residuals has exactly a standard normal distribution and they should not cross the 
horizontal line, see [21] Table 1.

6.3 Model Selection Criteria and Comparison

The GEST with the Poisson and negative binomial were fitted and compared (see Table 2) using the Akaike information 
criterion (AIC) [where AIC=−2l + 2df ; l is the log likelihood of the model, (−2l) is the global deviance of the model, and 
df is the total effective degrees of freedom of the fitted GEST model (equation 9); so a good fit of the model yields to a low 
value of AIC]. The AIC of parsimonious GEST models m1 and m2 were compared with model m3, where m1 [GEST-Poisson 
model] was fitted with a RW2 trend and random seasonality for µt, model m2 was fitted with a RW2 trend and random 
seasonality for µt and a constant for σt, and m3 was fitted with a RW2 trend and random seasonality for µt and a RW2 trend and 
random seasonality for σt. A further comparison was performed using the centile curves of the fitted models. The 100p centile 
of a random variable Y is the value yp such that p(Y ≤ yp) = p, i.e. yp = F−1(p), so yp is the inverse cumulative distribution 
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function of Y applied to p. The conditional centile of Y given explanatory variable X = x, i.e. yp(x) = F−1
Y |X=x (p). By 

varying x a 100p centile curve of yp(x) against x is obtained. Centile curves can be obtained for different values of p. Note that 
a z-score given y and x is defined by zp = Φ−1[FY |X=x(y)], where Φ−1  is the inverse cumulative distribution function of a standard 
normal variable. The z-scores are used as residuals in fitted GEST and GAMLSS [23]. The World Health Organization 
(2007) uses 100p=(3,15,50,85,97) in its charts and 100p=(1, 3, 5, 15, 25, 50, 75, 85, 95, 97, 99) in its tables.

Results

7.1 Centile Curves of the Fitted GEST-Poisson and GEST-NBI

The percentiles 100p = (0.5, 2.5, 25, 50, 75, 97.5, 99.5) of number of people tested positive of COVID-19 in the UK from day 28 
February 2020 to 06 January 2021 and the percentiles estimates of GEST Poisson and NBI models were given in Table 4. Be-
low 2.5% percentile of number of people tested positive, the estimate percentile of GEST-Poisson model was overestimated at 
23.89%, with GEST-NBI with a fixed overdispersion was a bit higher at 3.82% and GEST-NBI with a stochastic over dispersion 
was very close at 2.23%. Below 50% percentile of number of people tested positive, the estimate percentile of GEST- Poisson 
model m1 was identical 50.00%, with GEST-NBI m2 was quite low at 46.50% and GEST-NBI m3 was very close at 48.09%, and 
below 97.5% percentile of number of people who tested positive, the estimate percentile of GEST-Poisson m1 was underes-
timated at 80.25%, GEST-NBI model m2 and GEST-NBI model m3 were very close at 97.77%. The percentile curves for 
100p = (2.5, 50, 97.5) were plotted in Figure 3 and Figures S1, S2. The fitted centile curves for GEST-Poisson were tight 
and overlapping closer to 50% (see Figure S1). The percentiles below 50, 100p = (0.5, 2.5, 25), the Poisson model overestimated 
percentiles at 100p̂  = (19.43, 23.89, 41.72) respectively, and for 100p above 50%, 100p = (75, 97.5, 99.5), the Poisson model un-
derestimated the percentiles at 100p̂  = (61.46, 80.25, 84.39) respectively. In GEST-NBI, the fitted centile curves of NBI models 
were wider and dispersed unlike the Poisson. For percentiles below 50%, 100p = (0.5, 2.5, 25), GEST-NBI model m2 fairly 
overestimated the percentiles at 100p̂  = (1.59, 3.82, 23.25) respectively, and for 100p above 50%, 100p = (75, 97.5, 99.5) the NBI 
model m2 fairly  underestimated  the  percentiles  at  100p̂   =  (77.39,  97.77,  99.68)  respectively.   For GEST-NBI model m3, has 
very good prediction of the percentiles with 100p̂  =(0.00, 2.23, 28.03, 48.09, 73.89, 97.77, 99.68) respectively. The panels (a), (b), 
(c), (d), and (e) of Figure 2 shows the number of people who tested positive below each percentile 100p = (0.5, 2.5, 25, 50, 75, 
97.5, 99.5) together with the predicted percentiles of the fitted model          m3. 

Table 2: The fitted GEST models with Poisson and NBI, random walk of order 2 
(RW2) trend over time and random seasonality (Rseas) with frequency = 7 days.

Models Probability  distribution µt(γ1,t, s1,t) = σt(γ2,t, s2,t) =
m1
 m2
m3

Poisson
 Negative  binomial  type  I

Negative  binomial  type  I

RW2 + Rseas
 RW2 + Rseas
RW2 + Rseas

-
 constant RW2

+ Rseas

Table 4: The estimates of percentiles 100p = (0.5, 2.5, 25, 50, 75, 97.5, 99.5) from the fitted models m1 
(Poisson), m2 (NBI with constant dispersion) and m3 (NBI with random dispersion).

Models 0.5% 2.5% 25% 50% 75% 97.5% 99.5%
m1 19.43 23.89 41.72 50.00 61.46 80.25 84.39
m2 1.59 3.82 23.25 46.50 77.39 97.77 99.68
m3 0.00 2.23 28.03 48.09 73.89 97.77 99.68
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7.2 Model Comparison

Table 2 reports the GEST-Poisson and GEST-NBI which were fitted and Table 3 reports the estimates of their parameters: 
baselines, hyperparameters for the trend and seasonality and  Akaiki  Information  Criteria.   The  AIC  of  m2  [for  a  fixed  σ̂t]  
was  4831,  it  dropped by 52 in m3 [for a RW2 trend and seasonality for σ̂t], where AIC(m3) = 4779 (see Table 3), therefore, 

Figure 2:   The number of people tested positive of COVID-19 from 28 February 2020 to 06 January 2021 
in UK and the centile curves of fitted model. The graph shows the sample percentages below each centilecurve 
for comparison with the model predicted percentages. Cases below 0.5% model centile is 0%, cases below 2.5% the 
model centile is 2.23%, cases below 50% model centile is 48.09%,  cases below 97.5% model centile is 97.77 and 
cases below 99.5% model centile is 99.68%

Figure 3: Daily counts of people who tested positive of COVID-19 from day 28 February 2020 to 06 January 2021 in the United 
Kingdom together with centile curves of  the fitted GEST-NBI m3 with a time-varying overdispersion. The graph shows the sample 
percentages below each centile curve for comparison with the model predicted percentages. Cases below 2.5% model centile is 2.23%, 
cases below 50% model centile is 48.09%, cases below 97.5% model centile is 97.77%
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model m3 has a better fit, it implies that a RW2 trend and seasonality for overdispersion improves the predictive values of 
the GEST-NBI in comparison with the model of a constant overdispersion. The AIC of GEST-Poisson m1 [RW2 trend and 
a  random  seasonality  for  µ̂t],  was  6169,  it  dropped  by  1390  in  GEST-NBI  of  m3  where AIC(m3) = 4779 (see Table 3). The 
fitted RW2 trend over time in m1 and m3 look similar with a constant but if the constant is dropped, then trend of the NBI is 
much higher than the trend of the Poisson model, where the estimate of the baseline of number of infection per day was 9323.94 
in Poisson and the estimate of the baseline of number of infection per pay was 3223.88 in NBI (see Table 3). The fitted random 
seasonality removed the autocorrelation of the residuals in all models, in m1 the seasonality was more stochastic than the fitted 
seasonality in m3 which was constant over time. The fitted value of the disturbance variance in m1 seasonality was σ̂2

w1,t= 
0.007344, which is higher than the disturbance  variance  in  m3  seasonality  σ̂2

w1,t= 4.47 × 10−5.  In GEST-Poisson, the fitted 
RW2  trend  and  random  seasonality  model  in  µ̂t  overfitted  the  observations,  whereas  in GEST-NBI  the  fitted  µ̂t  was  smoother  
with  no  much  variability  but  the  seasonality  for overdispersion σt  was more stochastic with disturbance variance σ̂2

w2,t= 0.0532.

7.3 The Chosen Model

Model m3 is considered to be better than models m1 and m2 as it has the smallest AIC, where the maximum likelihood 
estimates of the mean and dispersion µt and σt, denoted by  µ̂t  and  σ̂t  respectively,  for  the  number  of  people  who  tested  positive  
of  COVID-19  in the UK per day from 28 February 2020 to 06 January 2021 were given by:

where

The maximum likelihood estimate of time-varying mean of number of people who tested positive of COVID-19 in the UK 
per day from 28 February 2020 to 06 January 2021  is  given  by  µ̂t  =  67, 886, 011 × exp [−9.955 + γ̂1,t + ŝ1,t]  and  plotted  together  
with time series of observations in Figure 4 (top right panel). The maximum likelihood estimate of  time-varying  overdispersion  
is  given  by  σ̂t  =  exp (−4.089 + γ̂2,t + ŝ2,t)  and  plotted  in Figure 4 (top left panel). Hence, the estimate of time-varying variance 
of number of people who tested positive of COVID-19 in the UK per day from 28 February 2020 to 06 January 2021  is  given  
by  µ̂t + σ̂tµ̂

2  =  n × exp (−9.955 + γ̂1,t + ŝ1,t) + exp (−4.089 + γ̂2,t + ŝ2,t) × [n × exp (−9.955 + γ̂1,t + ŝ1,t)]2, where n=67,886,011, 
and plotted in Figure S3. 

Table 3: The estimates of models hyperparameters, baselines, -Log Lik. , effective degrees of freedom and AIC for models m1 
(Poisson), m2 (NBI) and m3 (NBI)

Mod. σ̂2
b1,t σ̂2

w1,t σ̂2
b2,t σ̂2

w2,t ne
(β̂1)

e
(β̂2) -logLik df AIC

m1 0.001102 0.007344 - - 9323.94 - 2875.96 208.34 6168.6
m2 0.000186 6.0065e-05 - - 3211.01 0.01824 2366.28 49.22 4830.99
m3 0.000173 4.4723e-05 9.0509e-05 0.05321 3223.88 0.01676 2301.24 88.14 4778.8



Annex Publishers | www.annexpublishers.com                    

 
11

 
                            Volume 8 | Issue 1

Journal of Biostatistics and Biometric Applications

The estimates of the baselines for the mean and overdispersion were 3223.88 and 0.02 respectively [i.e. 67,886,011 × exp (−9.955) 
= 3223.88 and exp (−4.089) = 0.01676]. Hence, the baseline for the rate of infection with COVID-19 in the United Kingdom 
from day 28 February 2020 to 06 January 2021 is estimated at 3224 people per day.

The maximum likelihood estimates of γ̂1,t, ŝ1,t, b̂1,t, and ŵ1,t represent the fitted values of RW2 trend over time, fitted stochastic 
seasonality, and disturbances in RW2 trend, and seasonality in the fitted mean level µ̂t.
The maximum likelihood estimates of γ̂2,t, ŝ2,t, b̂2,t, and ŵ2,t represent the fitted values of RW2 trend over time, fitted stochastic 
seasonality, and disturbances in RW2 trend, and seasonality in the fitted overdispersion level σ̂t

The  maximum  likelihood  estimates  of  the  variances  of  white  noises  ̂b1,t  and ŵ1,t  in the  mean  were  σ̂2
b1,t = 1.73 × 10−4 and , 

σ̂2
w1,t =  4.47 × 10−5  respectively,  where  ̂b1,t ∼ NT−J (0, σ̂2

b1, IT −J ), ŵ1,t ∼N
T −M +1

(0, σ̂2w1,t IT−M+1), t = (1, . . . , T ), T = 314, J 

Figure 4: Time series of number of people tested positive of COVID-19 from 
28 Feb 2020 to  06  Jan  2021  in  UK  together  with  the  fitted  µ̂t  in  blue  and  
below  is  decomposition of  the  fitted  µ̂t  into  RW2  trend  and  seasonality  in  blue.   
Fitted  σ̂t  in  red  and  below  is decomposition of the fitted σ̂t  into RW2 trend and 
seasonality in red.
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= 2, M = 7, IT−J and IT−M+1 are unit matrices of size T − J and T − M + 1 respectively. The  maximum  likelihood  estimates  
of  the  variances  of  white  noises  b̂2,t  and ŵ2,t  in the overdispersion were σ̂2

b1,t = 9.05 × 10−5  and σ̂2
w2,t = 0.05321 respectively, 

where b̂2,t∼ NT−J (0, σ̂2
b2,t IT −J ), ŵ2,t ∼N

T −M +1
(0, σ̂2w1,t IT−M+1), t = (1, . . . , T ), T = 314, J = 2, M = 7, IT−J and IT−M+1 are 

unit matrices of size T − J  and T − M + 1 respectively.

7.4 The Fitted Mean and Overdispersion of COVID-19 Cases

The GEST-NBI decomposition of the fitted values of the time-varying mean (µ̂t) into base- line  × RW2  trend  [i.e.  67,886,011  × 
exp (−9.955) × exp (γ̂1,t)]  and  stochastic  seasonality [i.e.  exp (ŝ1,t)]  were  plotted  in  Figure  4  panels  (a)  and  (b)  on  antilog  scale,  
respectively. Panel (a) shows that the mean number of people who tested positive of COVID-19 was increasing exponetially 
in the first 34 days [from day 28 February 2020 to 01 April 2020] of COVID-19 pandemic, it slowed down from 01 April 2020 
to 14 April 2020 when it reached the peak of infection in 14 April 2020. The mean number was estimated at 5.59 people in day 
28 February 2020 and soared to 5160.70 people in 14 April 2020. From 14 April to 25 April 2020 the mean number of people 
test positive dropped from 5160.70 to 4770.23, then it increased again from 4770.23 to 4999.31 [from 25 April to 1 May 2020], 
then decreased significantly to a lowest level in 7 July 2020 since April,  from 4999.31 to 555.40 people on average as shown in 
Figure 4 panel (a) The mean trend decelerate to 4770.23 people in 25 April 2020 then increased again to 4999.31 in day 1 May 
2020. From 1 May 2020, the trend was plummeting continuously until 7 July 2020 from 4999.31 to 555.40 people. From 14 to 20 
August 2020 the mean was stable, from 1050.201 to 1074.61 people. From 24 August to 12 November 2020, the mean accelerated 
from 1144.64 to 25408.88, then decelerate to 14279.66 in 1 December 2020. From 1 December to 6 January 2021, the mean 
was increasing very fast from 14279.66 to 67111.62. This rapid increase in COVID- 19 cases arose as a result of emergence 
of a new variant of SARS-CoV-2 in South East England which was spreading rapidly in the population as pointed out by the 
European Centre for Disease Prevention and Control (ECDC)[24] in 20 December 2020 assessment re- port: Over the last 
few weeks, the United Kingdom (UK) has faced a rapid increase in COVID-19 cases in South East England, leading to 
enhanced epidemiological and virolog- ical investigations. Analysis of viral genome sequence data identified a large proportion 
of cases belonged to a new single phylogenetic cluster. In addition, the fast increase or a shift in the peak of mean number of cases 
from 5160.70 people in 14 April 2020 to higher peak of 25408.88 in 12 November 2020, was due to an increase in testing volume 
over that time. While the numbers of reported cases in March and April appear low, this was because only testing in hospitals was 
occurring and large scale population testing only started in May. Panel (b) shows a constant daily seasonality in the mean number 
of cases, reflecting a daily testing cycle throughout the year in number of people tested positive, there was a small change 
on daily seasonality from March to July, then a slight increase in the cycle. The coefficients of daily seasonality in the mean 
number of cases varied from 0.8651 to 1.1246, where [(exp (ŝ1,t) − 1) × 100%] can be interpreted as the proportionate change in the 
mean number of people tested positive due to a one-unit change in the day- of-the-week effects ,this percentage change varied from 
-13.49% to 12.46%, where some days-of-the-week increased the mean number of people tested positive by [0% to 12.46%] and other 
days-of-the-week decreased the mean number of people tested positive by [0% to -13.49%], with more details in the next Section.

Figure 4 panels (c) and (d) plots the GEST-NBI decomposition of the fitted values of  time-varying  overdispersion  (σ̂t)  into  
baseline  × RW2  trend  [i.e.  0.01676  × exp (γ̂2,t)] and  stochastic  seasonality  [i.e.   exp (ŝ2,t)]  on  antilog  scale  respectively.   Panel  (c)  
shows the fitted values of baseline × RW2 trend of time for overdispersion in number of people who tested positive of COVID-19 
in the UK from day 28 February to 6 January 2021. This trend without baseline varied from 0.28 to 3.76 and with baseline 
varied from 0.01 to 0.06. It started with a higher estimate in 28 February with and decreased gradually over time. Panel (d) shows 
a time-varying daily seasonality for overdispersion in COVID-19 cases. The overdispersion in number of people who tested 
positive of COVID-19 in the UK from day 28 February to 6 January 2021 exhibited a significant time-varying cyclical pattern 
reflecting a considerable change in the degree of infection in the population, the magnitude of the cycle dropped significantly 
between July and Sept, then increased again between Oct to Jan. The significant variation in overdispersion seasonality arose 
as the result of the wider spread in number of people who tested positive of COVID-19 and the impact of lockdown prevention 
strategy to minimise its wider spread.

The time-varying day-of-the-week  effects [ŝ1,t, ŝ2,t] in mean and overdispersion of num- ber of people who tested positive with 
COVID-19 were plotted per month in Figure 5 (in  blue  and  red  respectively),  where  [(eŝk,t  − 1) *100]  can  be  interpreted  as  
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the  propor- tionate change in the mean and overdispersion number of people tested positive due to a one-unit change in the 
seasonality of mean and overdispersion respectively. The fitted daily seasonality in the mean in Figure 5 (in blue) did not show 
significant variation, it was stable with a higher peak detected on Fridays, this peak plateaued and decreased slightly from 
July to Dec. The fitted daily seasonality in overdispersion in Figure 5 (in red) showed significant variation and changes in 
March to June and October to Decem- ber. This provides strong evidence that the national lockdown dropped the seasonality 
in overdispersion significantly.

7.5 Day-of-the-Week Effects

The maximum likelihood estimates of the coefficients of the day-of-the-week  effects in µ̂t and σ̂t  on  average  per  month  [i.e.   
(ŝµt |day )  and  (ŝσt |day )]  were  given  in  Tables  6  and  7 respectively and were plotted in Figure 6. The estimated day-of-the-week 
effects could be interpreted as a positive or a negative effect of a calendar on the mean and overdispersion in number of subjects who 
tested positive, where the coefficients above 1 represent a posi- tive calendar effect, and the coefficients below 1 represent a negative 
calendar effect. The maximum likelihood estimates of the coefficients for Friday-Thursday effects in March were  estimated  at  
ŝµt |days   =  (1.1241,  1.0352,  1.0386,  0.8651,  0.9076,  1.0151,  1.0374)  re- spectively. Hence, there was an increase of 12.41% in 
the mean number of cases on Friday, an increase in the mean by 3.52% on Saturday, an increase of 3.86% on Sunday, a decrease 
in the mean by - 13.42% on Monday, a decrease of - 9.24% on Tuesday, an increase of 1.54% on Wednesday and 3.73% on 
Thursday. The estimate of average Sundays effects in  overdispersion  in  March  was  ŝσt |Sun   =  2.209  [an  increase  of  120.9%]  

Figure  5:   Estimation  of  fitted  day-of-the-week   effects  ŝ1,t  in  the  mean  per  month  (in blue)  and  the  
fitted  day-of-the-week  effects  ŝ2,t  in  the  overdispersion  per  month  (in  red) of GEST-NBI model m3
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and  dropped  to ŝσt |Sun   =  0.786  in  June  [-21.4%],  then  decreased  to  ŝσt |Sun   =  0.636  in  July  [-36.4%  ]  and to  ŝσt |Sun   =  
0.818  in  August  [-18.2%]  (see  Table  7).   The  average  Wednesdays  effects  in overdispersion dropped significantly from ŝσt |W ed  
= 3.179 in March [increase of 217.9%] to ŝσt |W ed  = 0.825 in 1-6 Jan 2021 [-17.5%], (see Table 7), where [(ŝσt |day − 1) × 100%] 
can be interpreted as the proportionate change in the day-of-the-week effects of overdispersion in number of people tested positive 
due to a one-unit change in the seasonality. The average Sundays effects in overdispersion increased rapidly from ŝσt |Sun  = 0.818 
in August [-18.2%] to ŝσt |Sun  = 1.936 in September [93.6%], to ŝσt |Sun  = 2.901 in October [190.1%], to ŝσt |Sun = 3.240 in 
November [224%], to ŝσt |Sun  = 3.115 in December [211.5%], to ŝσt |Sun  = 3.075 in 1-6 January 2021 [207.5%]. The average 
Tuesdays effects in overdispersion increased from ŝσt |T ue  = 0.725 in June [-27.5%] to ŝσt |T ue  = 3.771 in 1-6 January 2021 
[277.1%] (see Table 7).

7.6 Normality Test: Adequacy of the Fitted Distribution

The DTOP in Figure S4 for GEST-Poisson model panel shows a negative slope which indicates that the variance in the residuals 
is too large and the variance in the model response variable is too small. Hence, the Poisson distribution is inadequate to fit 
the number of people who tested positive with COVID-19 in the UK since the bands cross the zero horizontal line, whereas in 
GEST-NBI m3 the bands did not cross the zero horizontal line which indicates that the negative binomial distribution is more 
adequate. Table 5 shows higher variance in the residuals of the fitted Poisson model.

Figure 6: Average day-of-the-week effects per month: panels (a), (b) and (c) show average day-of-the-week 
effects over time per month in the mean number of people tested positive of COVID-19 in the UK from 
28 Feb 2020 to 6 Jan 2021, and panels (d), (e) and (f) show average day-of-the-week effects over time 
per month on the time-varying dispersion of number of people tested positive of COVID-19 in the UK 
from 28 Feb 2020 to 6 Jan 2021.
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7.7 Overdispersion Test

The fitted values of the time-varying overdispersion σ̂t were positive but close to zero, σ̂t ∈ [0.001 − 0.16], suggesting an equidispersion 
Poisson model. However, the likelihood ratio test statistic was 1149.44 [-2 x (2301.24-2875.96) = 1149.44] which exceeded the 1% 
critical value of χ2

.98 = 5.41, therefore, the tests results strongly reject the null hypothesis of the equidispersion GEST-Poisson 
model, indicating the presence of (modest) overdispersion in the data. The fitted conditional variance exceeded the mean 
V ar(Yt|µt, σt)  >> µt as shown in Figure S3. In GEST-NO model for log transformation of number of people tested positive 
with COVID-19 in the UK, model with random standard deviation has lower AIC than the model with a constant standard 
deviation. log-likelihood was 224.61 and AIC = -271.06 compared to log-likelihood of 162.74 and AIC = -207.05. The fitted
values  of  the  time-varying  standard  deviation  in  GEST-NO  σ̂t  varied  between  0.04  to 0.53 [i.e. σ̂t  ∈ [0.04 − 0.53]],  as  shown  
in  Figure  S7.  The  log  transformation  reduced  the disturbance in the fitted standard deviation seasonality but the RW2 trend 
for standard deviation was higher in GEST-NO as shown in Figure S8.

Table 5: Summary of the randomised quantile residuals NBI and Poisson models

Models mean variance skewness kurtosis Filliben  corr.
m1 -0.1324988 8.088289 -0.0382294 3.310703 0.997329
m2 -0.0040586 1.024121 0.0205053 5.083053 0.987658
m3 -0.0186246 0.996569 0.0063311 2.528352 0.997337

Table 6: Estimates of average day-of-the-week effects per month on the fitted mean of GEST-NBI 
model m3, ŝµt |day , where [(ŝµt |day -1)     100] can be interpreted as the propor- tionate change in the 
seasonal effect in the mean number of people tested positive due to a one-unit change in the seasonality

ŝµt|day Mar Apr May June Jul Aug Sept Oct Nov Dec Jan

 ŝµt|F ri
 ŝµt|Sat
 ŝµt|Sun
 ŝµt|Mon
 ŝµt|T ue
 ŝµt|W ed
ŝµt|T hu

1.124
1.035
1.039
0.866
0.908
1.015
1.037

1.123
1.035
1.036
0.870
0.908
1.012
1.041

1.112
1.042
1.033
0.872
0.909
1.008
1.047

1.093
1.048
1.033
0.871
0.915
1.004
1.056

1.077
1.048
1.034
0.874
0.913
1.002
1.071

1.070
1.039
1.035
0.877
0.916
1.001
1.082

1.062
1.037
1.032
0.882
0.913
1.007
1.086

1.051
1.038
1.024
0.890
0.907
1.014
1.094

1.045
1.039
1.015
0.900
0.899
1.015
1.105

1.044
1.031
1.008
0.916
0.893
1.015
1.112

1.042
1.029
1.005
0.922
0.891
1.012

Table 7: Estimates of average day-of-the-week effects per month on the fitted random dispersion of 
GEST-NBI model m3, ŝσt |day , where [(ŝσt |day__1)     100] can be interpreted as the proportionate 
change in the seasonal effect of overdispersion in number of people tested positive due to a one-
unit change in the seasonality.

ŝσt|day Mar Apr May June Jul Aug Sept Oct Nov Dec     Jan

 ŝσt|F ri
 ŝσt|Sat
 ŝσt|Sun
 ŝσt|Mon
 ŝσt|T ue
 ŝσt|W ed
ŝσt|T hu

0.479
0.472
2.209
1.746
0.564
3.179
0.648

0.385
0.569
2.218
1.171
0.636
2.799
1.038

0.398
0.877
1.210
1.471
0.577
2.983
0.945

0.487
1.133
0.786
1.562
0.725
2.968
0.685

0.648
1.323
0.636
1.569
1.366
1.915
0.504

0.832
1.047
0.818
1.724
1.163
1.413
0.531

0.823
0.577
1.936
1.268
0.939
1.210
0.799

0.817
0.462
2.901
0.573
1.448
1.365
0.872

0.625
0.504
3.240
0.315
2.524
1.248
1.043

0.736
0.574
3.115
0.248
3.567
0.914
0.953

0.820
0.583
3.075
0.244
3.771
0.825
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Conclusion

This article provides strong evidence that the first national lockdown suppressed the epidemic of COVID-19 significantly, and 
suppressed the day-of-the-week effect of overdis- persion of COVID-19 infection significantly. By quantifying the unobserved 
signal of the trend over time with a random walk of order 2, the first national lockdown decreased the trend of COVID-19 
infection significantly to a lowest level in 7 July 2020 from the peak of infection in 14 April 2020.   In first 34 days [from day 
28 February 2020 to 01 April 2020], the fitted RW2 trend in the mean number of people who tested positive with COVID-19 
increased exponentially. This article shows strong evidence that the fitted variance exceeded the fitted mean over time in the 
number of people tested positive of COVID-19 in the UK suggesting that there is an overdispersion which arose because of 
extra source of variation among the number of people who tested positive with COVID-19 and that the relationship between 
the variance of the mean is not linear. By quantifying the unobserved signal of the seasonality in the overdispersion, there was a 
strong evidence that the national lockdown decreased the day-of-the-week effects of overdispersion signif- icantly. This article also 
shows strong evidence of a fast increase of overdispersion on Sundays and Tuesdays from September to 6 January 2021, in 
post-lockdown, as shown in Figure 5 and Figure 6. In order to decelerate this rapid increase in the number of people who tested 
positive with COVID-19, as detected by the fitted RW2 time trend and higher overdispersion seasonality, the UK government 
announced a second national lockdown on 4 January 2021 and started a vaccination programme against COVID-19 from 
December 2020 in order to bring the number of infections down.
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