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Abstract
COVID-19 pandemic is a global threat, where the rate of infection with Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) increases exponentially, and the spread of the virus from person to person is very fast. 
Fitting models for COVID-19 counts receive a great attention, and modelling the dispersion of COVID-19 counts 
helps measuring the spread of the disease in a population and evaluating the intervention. This paper examines 
the presence and persistence of day-of-the-week effects in both the mean and dispersion in the number of subjects 
testing positive for COVID-19 in the United Kingdom in 2020, and estimates the impact of first national lockdown 
on the spread of the disease in the population. The conditional mean and dispersion parameters of the probability 
distribution for the daily number of subjects testing positive for COVID-19 in the UK in 2020 are examined with 
the generalized structural time series (GEST) model.
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Background
The SARS-CoV-2 spread globally in 2020 causing significant morbidity and mortality [1]. Between 12 and 15 million individuals are 
estimated to be infected with SARS-CoV-2 across all eleven European countries combined, up to 4 May 2020, representing between 3.2% 
and 4.0% of the population [2].

Through the examination of COVID-19 surveillance data in Middlesex County, Massachusetts, from 2 March 2020 through 7 November 
2021, a new research [3] finds a strong evidence of day- of-the-week (DOW) effect in COVID-19 positive cases, where cases are 
twice as likely to be reported on Tuesdays-Fridays in the most stringent phases of non-pharmaceutical intervention, and half as likely to 
be reported on Mondays and Tuesdays in less stringent non-pharmaceutical intervention phases compared to Sundays.

Preliminary analysis of COVID-19 surveillance data for hospital admissions and deaths in Italy indicates a day-of-the-week pattern, and 
this pattern is confirmed for COVID-19 surveillance data in the United Kingdom [4]. For COVID-19 cases in the United Kingdom, the 
DOW indicates a daily pattern in cases as laboratory confirmation for the virus tends to slow down during weekends [4].

The United Kingdom imposes a national lockdown on 23 March 2020 by implementing non- pharmaceutical interventions to bring down 
the rate of infection. The daily number of subjects testing positive for COVID-19 in the UK from day 28 February 2020 to 06 January 
2021 are plotted in Figure 1. In June, July and August 2020, the number of cases drop significantly but since mid September to 6 January 
2021, the number of cases increase exponentially. The average value of the counts is 9,135 cases and the variance is 154,711,307 cases, suggesting 
overdispersion in the data. The data is available at https://coronavirus.data.gov.uk/details/cases

The decomposition of time series into trend and seasonality has proven to be extremely useful in the analysis of infectious diseases. Seasonal-
trend decomposition procedure [5] can be thought of one-dimensional decomposition of the mean parameter of the assumed probability 
distribution function of the outcome. A good example of seasonal-trend decomposition of Campylobacter cases in England and Wales and 
the impact of weather parameters on Campylobacter is illustrated in [6].

However, some data are better fitted with probability distributions with more than one random parameter, see for example generalized 
additive models for location, scale and shape (GAMLSS) [7]. The generalized structural time series (GEST) model [8] extends the 
GAMLSS model to serially dependent data.

The advantage of high-dimensional decomposition of the parameters of the  probability distribution function of time series is the extraction 
of trend and seasonality in location, scale, skewness, and kurtosis, when estimating the impact of intervention or the effects of explanatory 

Figure 1: Daily counts of subjects testing positive for COVID-19 in the UK from 28 Feb 2020 to 6 Jan 2021.
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variables. This new methodology becomes more complex when the data is non-Gaussian [8].

The rationale for fitting a smooth trend with random walk of order two (RW2) originates in the analysis of mortality table in actuaries 
[9,10]. Prior to Whittaker-Henderson method, actuaries use moving weighted average (MWA) technique for dealing with data near the 
extremities [11]. The Whittaker-Henderson graduation (smoothing) technique becomes a better method used by actuaries to smooth 
the data near extremities, and it is also used to model the business cycle and growth in seasonal-adjusted macroeconomic data  [12]. 
Flexible smoothing with B-splines is RW2 Whittaker-Henderson graduation (smoothing) technique [13]. The second-order random 
walk (RW2) model is commonly used for smoothing data and modelling response functions as it is computationally efficient due to the 
Markov properties of the joint (intrinsic) Gaussian density [14].

In addition, if seasonal or day-of-the-week effects are present in the data but ignored by model-building process, the result is likely 
to be a misspecified model that leads to residual autocorrelation of the order of the seasonality or DOW effects. Stochastic seasonality 
can be fitted using state space methods [8,15,16].

Statistical Modeling
Time series of number of subjects testing positive for COVID-19 in the United Kingdom from day 28 February to 6 January 2021 
are examined using the generalized structural time series model with the Poisson and the negative binomial distributions. The 
natural logarithm of the expected number of daily counts and the natural logarithm of the dispersion are jointly and simultaneously 
decomposed into baseline, trend and DOW effects.

Generalized Structural Time Series Model

Let Yt be the daily number of subjects testing positive for COVID-19 in the UK from 28 February 2020 to 06 January 2021, and D 
= N BI(µt, σt) where N BI represents the negative binomial type I distribution of the response variable, then the GEST model of two 
parameters (µt, σt), is defined as:

where n is the size of United Kingdom population in 2020 estimated at 67,886,011 people at mid year according to UN data [https://
www.worldometers.info/world-population/uk-population/] and the log(n) is an offset variable, βk  is a constant vector in the mean 
and dispersion parameters, the γk,t represent RW2 trends in the mean and dispersion, sk,t represent random day-of-the-week effects 
in the mean and dispersion, bk,t and wk,t are independently distributed disturbances with zero mean and variances σ2

bk , σ
2

wkwhere 
bk∼NT −Jk(0, σ2

bk IT −Jk  ) and ωk ∼ NT −Jk (0, σ2
wk IT -M +1)

 
.

The generalized structural time series (GEST) model [8] assumes that, conditional on the  past, the response variable Yt comes from a 
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parametric distribution with probability (density) function fYt (yt|θt), where θt is a vector of unknown distribution parameters. Here 
θt is restricted to two parameters: θt = (µt, σt), where µt is in general a location parameter, σt a scale parameter. Each parameter (µt, 
σt) is modelled by a structural time series model and/or linear, non-linear or smooth non-parametric models to account for explanatory 
variables. Each structural model is a random walk or autoregressive model, and a random seasonality.

Model Estimation
The GEST model defined by equation (1) has distinct sets of parameters: β, γ, s, σ2

e, σ2
b,   σ2

w where σ2
b and σ2

w are referred to as 
hyperparameters and represent the variances of the normal disturbance vectors bk,t and ωk,t for k = 1, 2  where b∼ N

T −J 
(0, σ2

b IT −J 
), ω 

∼ N
T −M +1

(0,  σ2
w IT −M +1

).  

Maximum likelihood estimation of β, σ2
b and σ2

w is defined by:

denotes the conditional density function of the response vector yt given β, γ and s, and

denotes the log-likelihood function. The extended log-likelihood function in [17]  p227-279, is defined as:

where f (γ, s|σ2
b, σ

2
w ) is the joint density function of γt and st given σ2

b and σ2
 w. The likelihood   f (y|β, γ, s)f (γ, s|σ2

b, σ
2

w ) is knows as 
the joint or extended likelihood in hierarchical generalized linear model [18]. However, the integration of (2) is intractable for a non-
Gaussian response variable and becomes more difficult when there is more than one random effect component, here there are four random 
effect components γ and s. This integral can be approximated using Laplace approximation which gives the following approximative 
marginal log likelihood:

where γ̂ and ̂s are the fitted value of γ and s estimated by maximising the extended likelihood   over (γ, s) for given (β, σ2
b, σ

2 w), and D̂ γ,s is 
the second derivative of the extended likelihood with respect to (γ, s) evaluated at γ = γ̂ and s = ̂s
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Following Appendix B2 and C in [7], the maximization of the extended likelihood in (5), can be achieved by using the GEST algorithm 
described below, which provides posterior mode estimates of the sets of parameters of β, γ, s and by maximizing the extended log 
likelihood for hyperparameters σ2

bk , σ
2

wk for k = 1, 2.

GEST Algorithm for Estimating β, γ, s Given Fitted σ2
b, σ2

w

(A) initialise (θ1, θ2) = (µt, σt), and set initial γk = 0 and sk = 0 for k =1,2.

(B) start the outer cycle to fit each of the distribution parameter vectors θk sequentially until convergence where, θ1 = µt = (µ1, µ2, . . . , 
µT )T, and θ2 = σt = (σ1, σ2, . . . , σT )T,

(a) start the inner cycle (or local scoring) for each iteration of the outer cycle to fit each of the distribution parameter vectors, θk = (µt, σt)

(i) evaluate the current iterative response variable zk and current iterative weights

(ii) Start the Gauss-Seidel (or backfitting) algorithm

     (I) estimate βk by regressing the current partial residuals  ϵk = zk − γk − sk against design matrix Xk using current iterative weights Wk.                       
(II) estimate the hyperparameters σ2

bk and σ2
wk by maximising their likelihood function Q, and then estimate γ

k and sk using the equation

(γk, sk )
T = [Ak + DT

KMk
-1Dk]

-1  Ak(ϵk, 0 k)
T, where 0 is a vector of zeros of length T,

(iii) end the Gauss-Seidel algorithm on convergence of β
k 
, γ

k and sk

(iv) update θk and η = g(θk).

(b)end the inner cycle on convergence of θk.

(c) end the outer cycle when the global deviance (= −2 × l) of the estimated model converges.

GEST Algorithm for Estimating the Hyperparameters α = (σ2
b, σ2

w)

1. Select starting values for α = (σ2
b, σ

2
w ).

2. Maximize Q over α using a numerical algorithm, where γ, s given α are obtained before calculating Q in the function evaluating Q.

3. Use the maximizing values for α to calculate the maximizing values for γ.

In step [(B).(a).(ii).(II)], the Q function, for a random walk trend and random seasonality model, is given by:

where ϵ = (ϵ1, ϵ2, . . . , ϵT )T, γ = (γ1, γ2, . . . , γT )T, s = (s1, s2, . . . , sT )T, Σ—1 = σe
—2W, Σ is a [T x T ] matrix, A is a [2T × 2T ] matrix 

of Σ—1, M is a matrix diagonal [σ2
bIT —J , σ

2
w IT —M+1] and D is a matrix diagonal [Dγ, Ds], where Dγ is a second order differencing matrix 

and Ds is a unit matrix of M levels and size [(T − M + 1) × T ]. The Q function for a random walk trend model, is given by:
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The maximization of Q over γ given α, where α is estimated by the GEST fitting algorithm, is given by solving the following equation:

Effective Degrees of Freedom

The total effective degrees of freedom of the fitted GEST model, df , combines those of the model for µt and σt, given by dfµt and 
dfσt respectively. Hence,

for k = 1, 2, where pk is the length of  βk and the dk is the effective degrees of freedom for the fitted random walk trend and random 
seasonality. Let B̂ , Â , M̂ , γ̂ , ŝ be the values of B, A, M, γ   , s on convergence of the GEST fitting algorithm. On convergence, (γ̂, ŝ)  =B̂.ϵ. 
Hence dk, the effective degrees of freedom used for random walk trend and random seasonality model in µt and σt, is given by:

In addition, let B =[Σ—1 + σ—2
bD

TD]
-1 

Σ—1 and let B̂ , Σ̂ , D̂  , γ̂  σ̂ b
- 2be the values of B, Σ, D, γ   and σ 

b
-2  on convergence of the GEST 

fitting algorithm. On convergence, γ̂ = B̂.ϵ. Hence dk, the effective degrees of freedom used for random walk trend model in µt and σt, is

As dk is difficult to calculate directly for large T , it can be calculated by setting ∂Q/∂σ2
b = 0 giving on convergence d = J + σ̂ - 2

b γ̂T DT Dγ̂, 
for the random walk trend model, and by setting ∂Q/∂σ2

b= 0 and ∂Q/∂σ2
w= 0 giving on convergence 

d=J+ M− 1 + σ̂ b
- 2γ̂TDTDγγ̂ + σ̂ w

- 2ŝTDs
TDsŝ, for the random walk trend and random  seasonality model, using the result  ∂/ ∂x  

log |xC + F | = tr [(xC + F )—1C], where x is a scalar and C and F are r x r matrices (provided |xC + F |  ≠  0  ) , Hence, for each 
distribution parameter, dk is calculated using the values of  γ̂K, ŝk, σ̂

2
bk , σ̂2      wk  on convergence of the GEST fitting algorithm. Note that the 

formula for the effective degrees of freedom has reciprocals σ̂ - 2
b  and σ̂ - 2

w. The estimates of these variances are often very small ,so the 
inverse of these variances are very large with very large effective degrees of freedom. In the random walk of order 2, the fitted trend is a 
smooth curve with no much variability  the variance is very small and inverse is very large, but because the smoothing matrix Dγ is a 
second order differencing matrix, the γ̂T DT Dγγ̂ become smaller and it compensates the very large value of the inverse of the variance.
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Model Selection Procedure

GEST Poisson and negative binomial models are fitted (see Table 1) and compared using the Akaike information criterion (AIC) with the 
total effective degrees of freedom given by equation 9. The AIC of parsimonious GEST models (m1 and m2) are compared with model 
m3, where m1 is fitted with a RW2 trend and random DOW for µt, model m2 is fitted with a RW2 trend and random DOW for µt and 
a constant dispersion σt, and m3 is fitted with RW2 trend and random DOW for both µt and σt. A further comparison is performed using 
the centile estimates of the fitted models [19], where the 100p centile of a random variable Y is the value yp such that p(Y ≤ yp) = p, 
i.e. yp = F—1(p), so yp is the inverse cumulative distribution function of Y applied to p, see [19] for more details. The z-scores are 
used as residuals in fitted GEST models.

Testing Normality of the Residuals

Normalized (randomized) quantile residuals of the fitted GEST models are examined using the detrended transformed Owen's 
plot (DTOP) [20]. If the fitted Poisson distribution is shown to be adequate, then the model for dispersion is not needed and σt = 0. 
The true normalized (randomized) quantile residuals always have a standard normal distribution for any regression type model whatever 
the original model distribution. Hence the fitted normalized (randomized) quantile residuals are always compared to a standard normal 
distribution making interpretation and comparison of the resulting plots (for different original model distributions) easier. Significant 
departures from the model (resulting in significant differences between the residuals and their standard normal distributions, if the 
model is correct) are indicated by the confidence bands not including the horizontal zero line for some value(s) in the DTOP. Similarly the 
DTOP of the fitted residuals provides a guide to model adequacy, if the fitted distribution of the model is adequate, then the normalized 
quantile residuals has exactly a standard normal distribution and they should not cross the horizontal line, see Table 1 in [20].

Testing Overdispersion

In GEST-NBI, the dispersion parameter σt is fitted with RW2 trend and random DOW effects, testing for overdispersion can be achieved 
by testing the null hypothesis H0 : σt = 0 against the alternative H1 : σt > 0, at 1% significance level. A sound practice to test overdispersion, 
is to estimate both Poisson and negative binomial models and test the null hypothesis H0 : σt = 0 against the alternative σt > 0 [21]. 
The likelihood ratio test for overdispersion is − 2 time the difference in the fitted log-likelihood of the two models and the asymptotic 
distribution of the LR test statistic has probability mass of 0.5 at zero and a half-χ2(1) distribution above zero [21] p89-91.

Results
The estimated parameters of GEST-Poisson and GEST-NBI are reported in Table 2. With regard to fitted distribution, the negative 
binomial distribution fits better the Poisson, since m2 has smaller AIC than model m1, and the detrended transformed Owen's plot 
of GEST-Poisson model has a negative slope which indicates that the variance in the residuals is too large (Table 3), the variance in 
the model response variable is too small, and the confidence bands cross the zero horizontal line. Therefore, the Poisson distribution 
is inadequate to fit the count of  COVID-19 cases. For negative binomial distribution, the confidence bands in models m2 and m3 do 
not cross the zero horizontal line, and the variance in the residuals are too small (see Table 3), indicating that the negative binomial 
distribution is more adequate to fit the counts of COVID- 19 cases. In the matter of overdispersion, model m2 fits better than m1, since 
the AIC of m2 is smaller than the AIC of m1 (see Table 2), and the likelihood ratio test statistic is 1019.36 [= -2 × (2366.28 - 2875.96)] 
which exceeds the 1% critical value of χ2

.98= 5.41, therefore, the  test results strongly reject the null hypothesis of a Poisson model 
and indicates the existence of overdispersion in the data. In terms of random overdispersion, the model with a random dispersion fits 
better than the model with a constant dispersion, since the AIC of m3 is smaller than the AIC of m2 (see Table 2), and the likelihood 

Models Probability distribution µt (γ
1,t

, s
1,t

) = σt (γ
2,t

, s
2,t

) =
m1
m2 
m3

Poisson
Negative binomial type I 
Negative binomial type I

   RW2 + RDOW
RW2 + RDOW

RW2 + RDOW

-
constant 

RW2 + RDOW

Table 1: The fitted GEST models with Poisson and NBI, random walk of order 2 (RW2) trend over time 
and random day-of-the-week (RDOW) effects.
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ratio test statistic is 130.08 [= -2 × (2301.24 -2366.28)] also exceeds the 1% critical value of χ2
.98= 5.41.

Table 4 reports the centiles 100p = (0.5, 2.5, 25, 50, 75, 97.5, 99.5) of models m1, m2 and m3. Below 2.5%, the centile estimate of model 
m1 is far too high at 23.89%, m2 fits a bit higher at 3.82%, but m3 fits better   at 2.23%. Below 50%, the centile estimate of m1 is identical 
50.00%, m2 is quite low at 46.50%, but m3 fits better at 48.09%, Below 97.5%, the centile of m1 is low at 80.25%, m2 and m3 are much 
better at 97.77%. Figure 2 shows the number of subjects testing positive and centile estimates of model m1, m2, and m3 for 100p 
= (2.5, 50, 97.5). The Poisson model appears to overestimate all centiles below 50%, for example for 100p = (0.5, 2.5, 25), the Poisson 
estimates are 100pˆ = (19.43, 23.89, 41.72) respectively. On the other hand, centiles above 50%, 100p = (75, 97.5, 99.5), Poisson model 
underestimates the centiles 100pˆ = (61.46, 80.25, 84.39) respectively. This is due to equidispersion feature of the Poisson model; i.e., the 
mean equals the variance. In negative binomial, the centile curves of models m2 and m3 are wider and dispersed as GEST-NBI model 
allows for extra variation beyond that expected in a Poisson model. Clearly, model m3 provides better centiles estimates. Hence, m3 is 
considered to be better than models m1 and m2.

The Chosen Model

The maximum likelihood estimates of the mean and dispersion in model m3, denoted by µ̂ t  and σ̂ t  respectively, are given by:

Models 0.5% 2.5% 25% 50% 75% 97.5% 99.5%
m1 19.43 23.89 41.72 50.00 61.46 80.25 84.39
m2 1.59 3.82 23.25 46.50 77.39 97.77 99.68
m3 0.00 2.23 28.03 48.09 73.89 97.77 99.68

Table 3: Randomised quantile residuals of models m1, m2 and m3.

Models mean variance skewness kurtosis
m1 -0.1324988 8.088289 -0.0382294 3.310703
m2 -0.0040586 1.024121 0.0205053 5.083053
m3 -0.0186246 0.996569 0.0063311 2.528352

Table 4: Centiles estimates of models m1, m2 and m3.

Mod. σ̂ 2
b1,t σ̂ 2

w1,t σ̂ 2
b2,t σ̂ 2

w2,t ne
(βˆ1)

e
(βˆ2) -logLik df AIC

m1 0.001102 0.007344 - - 9323.94 - 2875.96 208.34 6168.6
m2 0.000186 6.0065e-05 - - 3211.01 0.01824 2366.28 49.22 4830.9

m3 0.000173 4.4723e-05 9.0509e-05 0.05321 3223.88 0.01676 2301.24 88.14 4778.8

Table 2: Fitted parameters and AIC for models m1, m2 and m3.
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γ̂1,t is the fitted RW2 trend and ŝ1,t is the fitted random DOW effects in the mean parameter µ̂ t  of NBI; b̂1,t and ŵ1,t represent their white 
noise disturbances. The estimates of the disturbances variances are σ̂2

b1, t = 1.73 × 10—4 and σ̂2
w1,t  = 4.47 × 10—5 respectively. γ̂2,t is the 

fitted RW2 trend and ŝ2,t is the fitted random DOW effects in the dispersion parameter σ̂ t  of NBI; b̂2,t and ŵ2,t represent their white 
noise disturbances. The estimates ofthe disturbances variances are σ̂2

b2, t= 9.05 × 10—5 and σ̂2
w2,t= 0.05321 respectively. The estimate 

of the mean baseline is 3224. Hence, the baseline rate of infection over time is estimated at 3224 cases per day.The fitted conditional 
variance is given by  µ̂t + σ̂tµ̂

2= n × exp (−9.955 + γ̂1,t + ŝ1,t) +exp (−4.089 + γ̂2,t + ŝ2,t) × [n × exp (−9.955 + γ̂1,t + ŝ1,t)]2, where n=67,886,011. 
The fitted mean number of cases over time is plotted together with the observations in Figure 3 (panel a), and fitted dispersion over 
time is shown in Figure 4 (panel d).

Figure 2: Daily counts of subjects testing positive of COVID-19 with three centile curves of models m1 (top), m2 (middle), m3 (bottom).
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The Decomposition of the Fitted Mean and Dispersion

The decomposition of the fitted values of the mean (µ̂t)  and dispersion (σ̂t)  into RW2 trend and DOW effects are shown in Figure 3 
and Figure 4 respectively.

Panel (b) shows the fitted smooth trend over time in the mean number of cases without DOW effects. From 28 February 2020 to 01 
April 2020 - the first 34 days - the trend of infection increases exponentially. The mean number of cases without DOW effects is estimated at 
6 cases on 28 February 2020 and changes within 47 days to 5,161 cases on 14 April 2020. It slows down between 01 and 14 April 2020 when 
it reaches the peak of infection on 14 April 2020. The trend continues to drop significantly to 555 cases on 7 July 2020. Between 14 and 
20 August 2020 the trend is stable. From 24 August to 12 November 2020, the trend accelerates very fast from 1,145 cases to 25,409 cases. 
From 1 December to 6 January 2021, the trend increases exponentially from 14,280 to 67,112.

The fast increase and the shift in the peak number of infection, from estimated 5,161 cases on average on 14 April 2020 to 25,409 cases 
on average on 12 November 2020, are due to an increase in testing volume and laboratory capacities. Therefore, the numbers of subjects 
testing positive for COVID-19 appear low in March and April 2020, because testing is happening in hospitals only and a large scale of 
population testing starts in May 2020.

In addition, the fast increase in COVID-19 cases is due a new variant of SARS-CoV-2 emerges in South East England which spreads 
rapidly in the population as pointed out by the European Centre for Disease Prevention and Control (ECDC) on 20 December 2020 
report: 

Over the last few weeks, the United Kingdom (UK) has faced a rapid increase in COVID-19  cases in South East England, leading to enhanced epidemiological 
and virological investigations. Analysis of viral genome sequence data identified a large proportion of cases belonged to a new single phylogenetic cluster [22].

Panel (c) shows the fitted DOW effects in the mean number of cases. The DOW reflects a daily testing cycle over time. This cycle is 
likely to be dominated by reporting imperfections. There is a small change in DOW effects in the mean number of cases. The fitted 
DOW effects represent the relative risk of the day-of-the-week on mean number of infection. The relative risk vary between 0.8651 to 
1.1246.

Panel (e) shows the fitted smooth trend over time in dispersion of cases without DOW effects. The trend in the spread of COVID-19 
declines sharply from estimated dispersion of 3.76 on 28 February 2020, before lockdown, to estimated dispersion of 1.18 on 23 March 
2020, when the lockdow starts. It continues to decline to lower level of dispersion of 0.5, between 16 April and 27 May 2020. It starts 
to increase again but very slowly, from 0.52 on 1 June 2020 to 0.95 on 7 July 2020. On  first of June 2020, schools  are re-opened in 
England, and on twenty-third of June 2020, the first national lockdown ends.

Panel (f) shows the fitted DOW effects in dispersion of COVID-19 cases. The pattern exhibits significant changes over time in DOW 
spread (see more details in next Section).

Day-of-the-Week Effects

The estimates of DOW effects in the mean and dispersion are plotted in Figure 5 in blue and red respectively. DOW effects in dispersion 
represent the daily spikes in COVID-19 infection. These spikes in COVID-19 can be observed in the daily counts of COVID-19 cases 
in gray in Figure 3 Panel (a), above the fitted mean in blue. From 28 February 2020 to 21 March 2020, the time before lockdown, the 
spikes are occurring on Sundays, Mondays and Wednesdays with estimated effects of s t̂ = 1.90; 1.98; 3.23 respectively. Fridays, Saturdays, 
Tuesdays, and Thursdays do not have spikes, with ŝ t  = 0.5. After lockdown the pattern of daily spikes starts to change. This can easily 
be seen in Figure 6.

Spikes of Sundays are significant in March-April, they decline in May-August, then they increase dramatically in September-December. 
Spikes of Wednesdays are the biggest in March-July but they drop later on. Spikes of Tuesdays increase rapidly between October-
December. Table 5 and Table 6 report the average DOW effects in mean and dispersion per month.
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Figure 3: Panel (a): daily counts of subjects testing positive for COVID-19 in the UK from 28 Feb 2020 to 6 Jan 2021 in gray with 
fitted mean in blue. Panel (b): fitted RW2 trend. Panel (c): fitted random DOW effects. Panels (b) and (c) show Trend-DOW effects 
decomposition of the mean.
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Figure 4: Panel (d): fitted overdispersion. Panel (e): fitted RW2 trend. Panel (f): fitted random DOW effects. Panels (e) and (f) show Trend-
DOW effects decomposition of overdispersion.
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ŝµt |day Mar Apr May June Jul Aug Sept Oct Nov Dec Jan
ŝµt|Fri 1.124 1.123 1.112 1.093 1.077 1.070 1.062 1.051 1.045 1.044 1.042
ŝµt |Sat 1.035 1.035 1.042 1.048 1.048 1.039 1.037 1.038 1.039 1.031 1.029
ŝµt |Sun 1.039 1.036 1.033 1.033 1.034 1.035 1.032 1.024 1.015 1.008 1.005
ŝµt |Mon 0.866 0.870 0.872 0.871 0.874 0.877 0.882 0.890 0.900 0.916 0.922
ŝµt |Tue 0.908 0.908 0.909 0.915 0.913 0.916 0.913 0.907 0.899 0.893 0.891
ŝµt |Wed 1.015 1.012 1.008 1.004 1.002 1.001 1.007 1.014 1.015 1.015 1.012
ŝµt|Thu 1.037 1.041 1.047 1.056 1.071 1.082 1.086 1.094 1.105 1.112

Table 5: Estimates of average day-of-the-week effects per month on the fitted mean of GEST- NBI model m3, ŝµt |day .

ŝσt |day Mar Apr May June Jul Aug Sept Oct Nov Dec Jan
ŝσt |Fri 0.479 0.385 0.398 0.487 0.648 0.832 0.823 0.817 0.625 0.736 0.820
ŝσt |Sat 0.472 0.569 0.877 1.133 1.323 1.047 0.577 0.462 0.504 0.574 0.583
ŝσt |Sun 2.209 2.218 1.210 0.786 0.636 0.818 1.936 2.901 3.240 3.115 3.075
ŝσt |Mon 1.746 1.171 1.471 1.562 1.569 1.724 1.268 0.573 0.315 0.248 0.244
ŝσt |Tue 0.564 0.636 0.577 0.725 1.366 1.163 0.939 1.448 2.524 3.567 3.771
ŝσt |Wed 3.179 2.799 2.983 2.968 1.915 1.413 1.210 1.365 1.248 0.914 0.825
ŝσt|Thu 0.648 1.038 0.945 0.685 0.504 0.531 0.799 0.872 1.043 0.953

Table 6: Estimates of average day-of-the-week effects per month on the fitted dispersion of GEST-NBI model m3, ŝσt |day .
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Figure 5: Fitted random DOW effects in the mean on separate months (in blue) and the fitted random DOW effects in the overdispersion 
on separate months (in red).
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Discussion
This article introduces a new methodology for time series analysis of infectious diseases.

The high-dimensional seasonal-trend decomposition performs better than one-dimensional decomposition. GEST models m1 and m2 
are regarded as one-dimensional decomposition for the mean parameter, using Poisson and negative binomial distributions respectively. 
However, GEST model m3 is a novel methodology, where the dispersion parameter is decomposed into a random walk trend and ran-
dom DOW effects jointly and simultaneously with the mean parameter.

One of the reasons for fitting the three models is to test the overdispersion, if model m3 does not improve the fitted values of the 
mean, then the simple model of one-dimensional decomposition of m2 is adequate, given that the NBI fits better than the Poisson, 
therefore there is no need to decompose the second parameter of the assumed probability distribution function.

The currents time series models assume that the overdispersion of the data is constant through time; this is not the case in COVID-19 
data as the GEST model m3 provides strong evidence of presence and persistence of DOW effects and RW2 trend in the overdispersion 
of COVID-19 positive counts in the UK.

Figure 6: Average random DOW effects per month: panels (a), (b) and (c) show average random DOW effects in the mean per month, 
and panels (d), (e) and (f) show average random DOW effects in overdispersion per month.
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Day-of-the week effects in COVID-19 data in USA are estimated using segmented negative binomial regression models and Kolmogor-
ov-Zurbenko adaptive filters [3]. The extended Kolmogorov- Zurbenko filter is developed to detect outbreaks/spikes in cases in the pres-
ence of noisy variance [23]. However, the GEST model detects outbreak signals in t h e  mean and dispersion for non-Gaussian 
observations, therefore  it is  a more flexible parameter-driven model.

The small changes in DOW effects in the mean number of cases could be due to minimum access to health care services through 
non-pharmaceutical intervention phases. The estimated DOW effects in the mean is a useful tool for health professionals and health 
care services planning. The significant changes in DOW effects in dispersion reflects the temporal change in the spread of COVID-19 
during lockdown and after. More examinations are needed to understand the driving force of the DOW effects in COVID-19 spread 
and the methods can be applied to other respiratory diseases.

Conclusion
This article provides strong evidence that the first national lockdown suppresses the pandemic of COVID-19 significantly. The non-
pharmaceutical interventions during the first national lockdown decrease the trend of COVID-19 infection significantly, from the 
peak of infection on 14 April 2020 to a lower level of infection on 7 July 2020. Also, they decrease the trend of COVID-19 spread 
significantly. The estimated pattern of DOW effects in mean number of cases is stable through the year, the differences in DOW effects 
per day is likely to be dominated by reporting imperfection and the volume of testing per day. On the other hand, the estimated 
pattern of DOW effects in spread of cases is not stable and varies through the year. This stochastic pattern is possibly driven by social 
interactions, indoor activities, seasonal travels after lockdown and weather.
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