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Abstract

In this  research work,  a  new class  of  heavy-tailed mixture  cure  rate  models;  Type 1  Heavy-Tailed Gamma (T1HT-G) mixture

cure rate model was introduced using a new class of heavy-tailed distributions; Type 1 Heavy-Tailed Gamma (T1HT-G) distribu-

tion as baseline. The maximum likelihood parameters estimation approach was adopted for estimating the model parameters. Al-

so, the Monte Carlo simulation approach was adopted to assess the performance of the maximum likelihood parameter estima-

tion. Deviance information criteria such as AIC, BIC and CAIC were adopted to measure the models’ performance. The simula-

tion studies were conducted using three different sample sizes and 50 replications. Results from the model applications using real

life biological and biomedical data. Comparative measures from the models TI-HTG mixture cure rate (AIC=51.60, BIC=61.55,

CAIC=52.08) were smaller which showed the adequacy of the models to provide better fit for heavy-tailed data than the well--

known standard distributions. These results have supported the fact that heavy tailed models provide better fits than the usual

standard distributions when analyzing heavy-tailed data.
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Introduction

Many real-life applications have shown that many research areas, particularly in health science and finance, data are usually posi-

tive, and their distribution is usually a unimodal hump shaped and extreme values yield tails which are heavier than those of the

standard well-known distributions [1]. Traditional classical distributions often fall short in accurately modeling such data, making

it challenging to draw meaningful conclusions and potentially leading to the loss of crucial data characteristics. This is because the

classical  distributions  are  not  flexible  enough to  handle  such heavy-tailed data  sets.  Heavy-tailed distributions  are  more flexible

and reliable to use.

To address this issue, a more robust and adaptable distribution is required, given the unique nature of the data being analyzed. T-

X family of distribution techniques offers a better fit for data with heavy tails compared to classical distributions, variable transfor-

mations, and combinations of multiple distributions [2]. This was shown through a comparative analysis of the T-X method, con-

ventional distributions, variable transformations, and combinations of distributions. In this context, a heavy-tailed distribution, as

defined as one in which the probability of extreme values in the right tail is significantly higher than that of an exponential distribu-

tion [3].

That is, a distribution f (x) is said to be heavy tail if its survival function satisfies the condition;

Literature holds records of many developments and applications of heavy-tailed distribution to real life data. Probability distribu-

tions are very important for parametric and semi-parametric inferences [4]. Literature holds records of the development of many

methods used to develop probability distributions. They had a good understanding of the initial methods used to generate univari-

ate continuous distributions. These methods included Johnson's (1949) translation procedures, Tukey's (1960) quantile function

approaches, and Pearson's (1895) differential equation techniques. In recent decades, there has been a consistent effort to develop

new methods for creating more versatile and innovative distributions. Lee et al. (2013) categorize most of the approaches devel-

oped after the 1980s as "combination" techniques, as they are based on the idea of combining two existing distributions or enhanc-

ing an existing distribution with additional features to create a new family of distributions. In this work, we have proposed a new

robust and flexible mixture cure rate models for handling survival data with heavy-tails using two a variant of T-X family of distri-

butions as basslines distribution.

Methodology

In the development of the new distribution, we have considered a family of distributions and a baseline function after preliminary

analysis of the data. The family of distribution and the baseline adopted are discussed below.

Family of Distribution

The T-X family of distributions was adopted for the development of the new distribution. Zhao et al (2020) developed a new fami-

ly of distributions called Type1 Heavy-tailed Family of Distributions. This family of distribution was adopted because to its flexibil-

ity and applicability.

Baseline Distribution: Gamma Distribution

Gamma distribution was adopted as the baseline distribution for the new heavy-tailed distributions. The Gamma distribution is

one of the probabilistic tools used to evaluate the appropriate model for predicting continuous random variables. The gamma dis-

tribution stands apart from distributions with one, two, three, or four parameters due to its unique characteristic of having only a
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single parameter. This distribution becomes particularly relevant when one is interested in estimating the time required for a spe-

cific number of independent events to transpire.

Consider a α>0 and β>0 as two parameters of a distribution. A Gamma function is denoted as Γ(α) and defined as

Dividing both sides by Γ(α)

Substituting x=βy and defined

The distribution denoted as f (x; α, β) is known as the Gamma distribution, with the parameter α > 0 being referred to as the shape

parameter. This parameter primarily affects the distribution's peak, as discussed by Stephenson et al. in 1999. When α is greater

than 0, it is alternatively termed the scale parameter, as it primarily influences the dispersion of the distribution. The gamma distri-

bution with two parameters is commonly employed for analyzing lifespan data [6]. Furthermore, it highlighted that the Gamma

distribution is the most frequently used statistical distribution in the fields of reliability analysis and survival analysis (7). In

essence, the Gamma distribution is the preferred choice for statistical analysis in these domains.

Probability Distribution Function (PDF) for Type 1 Heavy Tailed Family of Distributions

The PDF of the distribution developed by Zhao et al (2020) is defined as;

where,

θ is the additional parameter for the family of distribution

ε is the parameter space of the baseline distribution.

f (x, ε) is the pdf of the baseline distribution

F (x, ε) is the CDF of the baseline distribution

Cumulative Distribution Function (CDF) for Type 1 Heavy Tailed Family of Distributions

Zhao et al (2020) defined the cumulative distribution function of Type 1 Heavy tailed family of distribution as:

where,

θ is the additional parameter for the family of distribution
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ε is the parameter space of the baseline distribution.

Survival Function of the Type 1 Heavy Tailed Family of Distributions

Zhao et al (2020) defines the survival function of Type 1 Heavy tailed family of distribution as:

where

G (x, θ, ε) is the cumulative distribution function for Type 1 Heavy Tailed family of distribution

Hazard Function of the Type 1 Heavy Tail Family of Distributions

The Hazard Function of the Type 1 Heavy Tail family of distribution is given as

Rth Moment of the Proposed Model for Type 1 Heavy Tailed Family of Distributions

In this research, effort was made to derive the μr' for type 1 heavy tailed gamma distribution by deriving K(r,i+j) for the proposed

model. Zhao et al (2020) derived the rth moment for type 1 heavy tailed family of distribution as

where

θ is the additional parameter for the family of distribution and

Results and Discussion

Derivation of the PDF of Type1 Heavy-tailed Gamma(T1HT-G)

Denote the pdf of T1HT-G as g0 (x,θ, ε). then g0 (x,θ, ε) is gotten by substituting equation (1.1) into (1.2) and defined

where γ (α, βx) is the lower incomplete gamma function and it is defined as



5 Journal of Biostatistics and Biometric Applications

Annex Publishers | www.annexpublishers.com Volume 9 | Issue 1

Figures 1.1: PDF plot of T1HT-G

Figures 1.1 shows the probability density function plots of the T1HT-G for different parameter values. The plotted graphs showed

that the curves are skewed to the right and also showing heavy tails. This establish the ability of the T1HT-G distribution to handle

skewed and heavy tailed data.

Derivation of the Cumulative Distribution Function (CDF) for Type 1 Heavy-tailed Gamma

Cumulative Distribution function (CDF) proposed Zhao et al (2020) defined the CDF of the Type1 Heavy-tailed family of distribu-

tion as:

Thus, the CDF of the T1HT-G is derived as follows
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Therefore, the CDF of the proposed model is given by (Eq.1.11)

Derivation of the Survival Function of Type 1 Heavy-Tailed Gamma Baseline

The Survival Function of the Proposed Model is given as

Deviation of the Hazard Function of the Type 1 Heavy-Tailed Gamma

The Hazard Function of the proposed model is given as

Some Statistical Properties for the Type1 Heavy-Tailed Gamma Distribution

Rth Moment of the for type 1 heavy Tailed Family of Distribution

Furthermore, Zhao et al (2020) derived the rth moment for type 1 heavy tailed family of distribution as

Where 

In this research, effort was made to derive the μr' for type 1 heavy tailed gamma distribution by deriving K(r,i+j) for the proposed

model

Recall that

The power series expansion of γ (α, βx) is
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Let

And

Equation (Eq.1.16) is the Kr, i+j for type 1 heavy tailed gamma distribution and substituting it into (Eq.1.15) gives the Rth moment

for the proposed model (Type 1 heavy tailed Gamma Distribution)

Some of the most important features and characteristics of a model can be obtain through its moments.

Derivation for the Mean of T1HT-G

The first raw moment also called the mean is obtained by substitution r=1 in equation (1.16).

where

Derivation for the Variance of T1HT-G

The variance denoted as μ2 is obtained by

Where μ2' is the second raw moment obtained by
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where

Derivation of the Quantile Function

The quantile function denoted by Q(p) is the inverse of equation. (1.11) where p∈ (0,1).That is solve for x in the equation (1.17)

Equation (1.18) is the quantile function of T1HT-G

The quantile function of T1HT-G 1st, 2nd and 3rd quantiles are obtained by substituting p = 0.25, 0.5 and 0.75 in equation (1.18), re-

spectively

Some Special Cases of the T1HT-G Distribution

Different values for the parameters reduce the T1HT-G distribution to other forms. Some of which are listed below

1. θ =1, T1HT-G reduces to a Gamma distribution with parameters α and β

2. If α = θ =1, T1-HT-G reduces T1HT-E (Type 1 Heavy-tailed Exponential distribution) with parameter β>0

3. If β = 1, T1HT-G reduces to a one parameter T1HT-G.

4. If β = 2 and α = τ/2 where τ is an integer , then T1HT-G reduces to a Type 1 Heavy tailed Chi Square (T1HT-CS) distribution

(New distribution)

Log-Likelihood function for Type 1 Heavy Tailed Gamma Distribution for Complete Data Set

By definition

Taking log on both sides and applying the logarithmic laws gives
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Maximum Likelihood Estimated for T1-HT-G Parameter for Complete Data Set

Maximizing l(θ) with respect to the parameters will give us the MLE estimation. solving equations below will yield the MLE for the

parameter α ,β and θ

But the partial derivatives are not tractable, therefore we will estimate it numerically using a computer software.

Simulation Results for Complete Data

Table 1.1: Simulation Result for Parameter Estimation for T1HT-G and EOW-G using sample size of n=N T=50

N Parameter AE SE MSE

10 θ 2.38635 0.17006 0.036619

α 2.55101 0.006442 1.64E-05

β 3.77481 0.321439 0.01177

50 θ 1.85286 0.09345 0.008819

α 0.94053 0.00211 1.01E-06

β 2.97632 0.001296 0.01126

100 θ 1.45040 0.09772 0.009549

α 0.48827 0.002293 5.23353E-06

β 2.1095 0.001712 0.001611

Note: (T1HT-G: θ = 1.4, β=2.0 and α = 0.5)

Based  on  the  simulation  results  presented  in  Tables  1.1,  the  estimations  of  the  TIHT-G  parameters  exhibited  favorable  perfor-

mance, displaying minimal bias and respectable Mean Square Errors (MSEs) across all  tested scenarios. These findings emerged

from the research, implying that with increasing sample size, these estimates become progressively more accurate and reliable. Fur-

thermore, the evidence supporting the asymptotic unbiasedness of these estimators becomes apparent as the biases approach zero

with the growth of the sample size. Additionally, these estimators demonstrate their validity by reducing the MSEs when applied

to the TIHT-G parameters as the sample size increases.

Application to Real Data Set

To examine the usefulness and performance of the distributions we have applied it to real life complete data, it shows how to fitt-

ing the model to real life dada. We also carried out some comparative procedures using Akaike Information Criteria (AIC), Baye-

sian Information Criteria and Corrected Akaike Information Criteria (CAIC) to examine the performance of the model when com-

pared to other sub-models
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Application of T1HT-G to complete Data Set

The data is made up 72 Guinea Pigs survival times collected from research work by Elbatal et al. (2013). The pigs were infected

and their survival times were measured and recorded. The data set is listed below:

Table 1.2: T1HT-G results for Guinea Pigs survival time

Model Parameter Estimates loglik AIC BIC CAIC

T1HT-G θ 0.009 -70.38 146.76 156.29 147.29

α 1.53

β 24.40

α 1.47

β 22.10

γ 2.24

Gamma α 2.180 -76.27 156.54 160.37 156.80

β 1.105

Weibull α 0.02 -76.22 156.44 160.265614 156.69

β 0.92

γ 0.24

Exponential α 0.50

β 0.49 -83.45 166.51 168.40 166.60

Table 1.2 showed the result of the analysis.  The T1HT-G showed smaller values for all  three informstion criteria.  Which means

T1HT-G performed better than the well known classical distribution.

Derivation of the T1HT-G mixture Model

A mixture model for lifetime data sets assumes that the probability of the time-to-event to be greater than a specified time t and

defined the survival function as
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Substituting

Into Eq. 4.24 gives

Eq.4.26 is the T1HT-G density function for the lifetime T.

The Parameter Estimation of T1HT-G Mixture Cure Rate Model

The likelihood function of the mixture form of the cure rate model is

Substituting

And

Into Eq.4.27 gives

Taking log on both sides gives

Equating the partial  derivative of l  with respect to each parameter to zero and solving the equation simultaneously will  give the

maximum likelihood estimates. This will be done using a computer software.

Table 1.3: Simulation Result for Parameter Estimation for T1HT-G using sample size of n=N T=50 with 20% Censoring

Sample size Parameter AE SE MSE

50 θ 2.384253 0.16006 0.025619

α 0.551016 0.004402 1.94E-05

β 0.774811 0.121439 0.014747

100 θ 1.85286 0.099092 0.009819
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α 0.54053 0.00318 1.01E-05

β 0.276831 22.91346 525.0267

200 θ 1.450402 0.09772 0.009549

α 0.528271 0.002295 5.26553E-06

β 0.180219 0.039718 0.001578

500 θ 0.841998 0.038391 0.001474

α 0.524191 0.001592 2.54E-06

β 0.165629 0.035725 0.001276

Note: T1HT-G:θ=0.2, β=2.0 and α=0.5

Table 1.4: Simulation Result for Parameter Estimation for T1HT-G using sample size of n=N T=50 with 60% Censoring

Sample size Parameter AE SE MSE

50 θ 6.229661 2.015881 4.063778

α 0.634267 0.008224 0.0000067

β 0.353889 0.135219 0.1828497

100 θ 3.429987 1.137128 1.293061

α 0.59887 0.005301 0.000062

β 0.18585 0.079973 0.063958

200 θ 2.711301 1.011161 1.022447

α 0.574444 0.00375 0.000014

β 0.273157 0.001794 0.032325

500 θ 1.446203 0.065941 0.004348

α 0.562754 0.00261 0.000006

β 0.599708 0.004987 2487.695

Note: (T1HT-G:θ=1.5,β=2.5 and α=0.5)

Tables 1.3 and 1.4 provide an insightful overview of the simulation results, demonstrating the strong performance of model param-

eter estimations. These estimations exhibit minimal bias and reasonable Mean Square Errors (MSEs), pointing to their reliability

and precision, especially as sample size increases. This suggests that, with a growing sample size, the estimates become more accu-

rate and dependable, aligning with the concept of asymptotically unbiased estimators, where biases approach zero as the sample

size expands.

Application of the T1HT-G Mixture Cure Rate to the Breast Cancer Data Set

The data used for this analysis was sourced from the publication by Ilori  and Awodutire (2017).  It's  worth noting that this data

originated from the breast cancer case records of patients at the Ladoke Akintola University of Technology's Teaching Hospital in

Osogbo. Survival time was calculated as the difference between the last day patients were seen and their initial treatment reporting

date. Additionally, it's important to acknowledge that data access will be restricted after one year.

This analysis considered several prognostic factors, including years of nursing experience (in years), age at menarche, body mass

index, stage at presentation, the availability of neoadjuvant treatment, and the use of contraception, all of which played a role in as-
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sessing and understanding breast cancer-related variables.

Figures 4.3: Histogram Plot of survial time of Breast Cancer Data

Figure 4.3 shows that the histogram of the survival times of breast cancer patients. It reveals that the data is rightly skewed which

from (Ilori  & Awodutire,  2017).  had  shown that  the  Type  1  Heavy-Tailed  Gamma distribution  can  give  a  good fit.  Figure  4.17

shows that the distribution fits the survival data well.

Table 1.5: T1HT-G Mixture Cure Rate results for Breast Cancer Data

Model Parameter Estimates Loglik AIC BIC CAIC

T1HT-G θ 1.47 -21.80 51.60 61.55 52.08

α 0.62

β 0.51

Gamma α 0.27 -43.97 93.95 101.42 94.23

β 0.41

Weibull α 2.13 -39.65 85.31 92.78 85.60

β 1.11

γ 1.69

Exponential α 0.33 -44.29 92.59 97.57 92.73

β 0.241

Table 1.5 revealed the result of the analysis. We can deduce that the new model performed better than the usual classical distribu-

tion as the CAIC, BIC, and AIC values are small.
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Conclusion

In this study, we have undertaken the development and analysis of the T1HT-G distribution. Our investigation encompassed the

derivation of key statistical properties such as the survival function, hazard rate function, probability distribution function, and Rth

moment for these models. Furthermore, we employed the maximum likelihood approach to estimate the parameters of these distri-

butions and models.

To  evaluate  the  performance  and  reliability  of  these  estimators,  we  employed  a  range  of  statistical  criteria,  including  the  Mean

Square Error (MSE), Bayesian Information Criterion (BIC), Corrected Akaike Information Criterion (CAIC), and Akaike Informa-

tion Criterion (AIC). The findings provided a comprehensive assessment of the accuracy and fit of our models to the data.

Notably, the consistency of the Maximum Likelihood Estimates (MLE) was demonstrated through a decrease in MSE as the sam-

ple size increased, further validating the robustness of our parameter estimates.

Future Works

Future work includes

1. A bivariate and multivariate extension of the T1HT-Gamma should be studied

2. Regression problems with covariates should also be considered for the model
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