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Abstract

Background: The use of surface electromyography (sEMG) signals for clinical diagnosis is well appreciated in the medical

field. However, the use of sEMG signals for the control of powered prosthetic limbs is still regarded as a futuristic idea. Past

and present studies have focused more on the upper limb (hand) as compared to the lower limb (leg). The challenges associ-

ated with the controlling leg movement include designing for both balance and locomotion. After amputation, the muscle

orientation and alignments on the residual stump changes as some of the anatomical landmarks are changed during surgical

procedure. To achieve locomotion, some amputees, generally from third-world nations, use passive mechanical prosthetic

limbs with a fixed ankle. These passive mechanical limbs are deemed ineffective in providing normal gait on amputees. This

paper presents a novel integration of sEMG and inertial measurements to control an active powered prosthetic ankle. A pat-

tern recognition system is presented as a technique for optimising controller performance. Furthermore, force measure-

ments of the hind and mid foot are used to enhance the knowledge base.

Methods: Initially, passive mechanical limbs were fitted on two subjects. Reflective markers, inertial measurement units (I-

MU) and EMG electrodes were placed on selected anatomical landmarks and muscles respectively, for both amputated and

sound leg. Vicon Nexus and Noraxon systems were used to record the data. ISEK and SENIAM standards were adhered to

during data collection and processing. The results were then used to design and prototype a biomechatronic prosthetic ank-

le. Three sEMG signal channels and two MPU6050 IMU sensors (thigh and shank locations) were synchronised using an

ADS1298 and 32-bit ARM processor. Force sensitive resistors (FSR) were placed on mid-foot and the hind-foot to aid event

activation. Twenty-three time and frequency domain features were extracted and then Principal Component Analysis (P-

CA) was then used for dimensionality reduction. Classification gait movements was achieved through the implementation

of Linear Support Vector Machine (LSVM). The biomechatronic prosthetic ankle was fitted onto the amputated leg. The

subject was then tasked to perform normal gait as previously done with a passive limb. The gait parameters and anatomical

angles were recorded using the Vicon Nexus and Noraxon systems simultaneously. The EMG results were further processed

and analysed using the myoRESEARCH® MR3, Noraxon System.
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Results: Recording of EMG signals was a challenge. Skin movement and changes in skin impedances contributed immense-

ly to signal acquisition challenges. A high pass filter with a cut-off of 15.48Hz and low pass filter of 500 Hz was achieved. A

stability analysis (Nyquist Analysis) of the circuitry produced a 0.1 factor which indicated a very stable system as evidence of

acceptable common mode rejection ratio (CMRR) values of the signal amplification and processing circuitry. The wavelet

denoising technique provided better signal output as compared to the Savitzky Golay and Moving Average techniques.

Tibialis Anterior EMG signals were easily classified during dorsiflexion while Medialis and Gastrocnemius EMG signals

were classified better during plantarflexion. During classification, 20% of the data was used for validation while 80% of the

data was used for training the classifier. Principle Component analysis (PCA) was implemented as a dimensionality reduc-

tion technique in order to reduce processing time of the architecture. As a way of determining the best classifier, twenty-two

classifiers were tested. Linear Support Vector Machine achieved 100% classification on labelled data and 99.25% accuracy

on unknown data with a processing time of 350 ms. Ensemble classifiers exhibited a remarkable 100% classification accura-

cy on both trained and new data. However, their processing times were 1032.70 ms on average which is 300% more time

consuming than the LSVM. Therefore, the LSVM were selected as the optimum classifier for the design. Precision, sensitivi-

ty and specificity of the LSVM were all greater than 98.9%.

Conclusion: High classification accuracy, precision, sensitivity and specificity of the LSVM provided a possibility of utilis-

ing pattern recognition control architectures for powered limbs. Input signal infidelity had a negative effect on the classifier

performance. Stochastic and sinusoidal form of the sEMG signal improved the implementation of several classifier algo-

rithms and the extraction of various types of features such as zero crossing and slope sign change. Hardware performance

had an adverse effect on system performance. Therefore, if implemented in a reliable hardware system, the proposed control

architecture has the capability of restoring amputee gait.
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Background

Lack of a healthy diet and the rising prevalence of health issues such as diabetes, as well as degenerative joint diseases such as arthri-

tis and osteoporosis, are building the demand for prosthetics [1]. Once a patient develops degenerative joint diseases, the affected

limb if not treated will ultimately result in amputation. These procedures will require use of prosthetics for rehabilitation and per-

manent use. In addition, traumatic events such as accidents or vascular and circulatory disorders often lead to amputation of the

lower limb below the knee joint [2]. According to [3], the production cost of a transtibial mechanical passive limb for daily living

activities is approximately $25 196. With basic electronic components, the cost increases to approximately $31 196. Therefore, the

microprocessor-based limbs will cost close to $45 563. In South Africa, the average purchase price of a passive mechanical limb is

approximately R75 000 while the cost of a powered active prosthetic is R1.4 million. As a result, the cost of prosthetic limbs is far

beyond the reach of many South Africans. Therefore, the large population of South African amputees have resorted to using un-

orthodox methods to achieve mobility, ranging from simple walking sticks to home-made crutches.

The use of stiff mechanical prosthetic ankles causes asymmetries in gait cycle leading to possible lower back pain injuries and bruis-

es  on  the  load  bearing  points  on  the  socket  [4].  Amputees  often  achieve  desired  distance  variables.  However,  such  gait  perfor-

mances  are  achieved  through  the  use  of  excessive  energy  and  excess  flexion  of  residual  muscles  to  compensate  for  the  missing

limb. Thus, increased muscle contraction on the intact side and higher metabolic energy expenditure. The long-term effects are os-

teoarthritis, osteoporosis, back pain and to a large extent musculoskeletal problems. As a result, artificial prosthetic limbs are re-

garded by the amputees as exotic lifeless attachments to the body and not as a non-biological extension of the human body.

There are basically four normal requirements for gait which are equilibrium, locomotion, musculoskeletal integrity and neurologi-
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cal control [5]. However, as a result of amputation, amputees often struggle to achieve all the basic requirements. Mechatronic sys-

tems coupled with intelligent control architectures provide the platform to restoring an amputee's overall mobility related lifestyle.

However, the recovered gait is largely influenced by the extent of amputation and functional level of the prosthesis. The transtibial

osteomyoplastic amputation technique offers residual muscles that are active throughout the gait cycle. These muscles offer poten-

tial sites for extracting surface electromyography (sEMG) signals even though amputees often struggle to achieve all the basic re-

quirements.  Transtibial  osteomyoplastic  amputees  often  recover  their  mobility  capabilities  earlier  than  transfemoral  amputees

mainly due to the presence of the knee [6]. During rehabilitation different surgical procedures are usually applied depending on

the cause leading to the amputation [7].

An amputee can receive a short, average (medium) or long amputation with respect to the position of amputation along the lower

limb.  When selecting the  level  of  amputation there  is  a  trade-off  between increased function of  the  more distal  level  versus  de-

creased  complication  rate  with  more  proximal  level  [8].  As  a  result,  as  the  level  of  amputation  moves  proximally,  the  walking

speed of the individual decreases and ultimately the oxygen consumption increases. Therefore, the level of amputation has a direct

impact on the recovered gait for lower limb amputees.

The motivation for osteomyoplastic amputation is the need to develop a residual limb for an amputee who is highly involved in

ambulatory related activities. Therefore, there is bone bridging between the tibia and the fibula resulting in a more stable end bear-

ing limb [9]. The loss of ankle mortise causes the fibular instability. However, the myoplasty technique brings about stability on

the residual limb [10]. Furthermore, the blood flow and recovery of normal length-tension of the muscles is improved [9].

Materials and Methods

The study methods and procedures used in the study are an extract of procedures reported earlier by the same researchers in the

following articles: “Investigating the effects of passive mechanical ankle on unilateral osteomyoplastic transtibial amputees, [11]” and

“Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architec-
tures, [4]”. The procedure for data collection and segmentation was explained in depth during discussion of results in this study.

Furthermore, emphasis was on signal acquisition and processing since it had an influence on system performance. To achieve the

desired results, the International Society of Electrophysiology and Kinesiology, ISEK [12] and Surface EMG for non-invasive as-

sessment of muscles, SENIAM standards [13] for data collection, processing and reporting were adhered to.

Subjects

The targeted control system architecture was patient specific. Therefore, the sample size was reduced to two amputees. The sample

size was reduced to two participants because the proposed solution is user specific, the mandate was simply to develop the generic

framework that will require customisation upon application per patient. Since these were unilateral amputees, the right non-ampu-

tated leg was used as control. However, for the purposes of a robust pattern recognition system, the number of activities were in-

creased and so were the samples per subject. The study was conducted under research protocol S16/05/093 approved by Health Re-

search Ethics Committee at Stellenbosch University. The study consisted of two male unilateral transtibial amputees (left leg ampu-

tated) weighing an average of 80 ± 2 Kg and a mean height of 1.75 ± 0.02 m. The subjects were middle aged men such that subject

1  was  aged  42  years  and  subject  2  was  aged  44  years.  Both  the  subjects  had  received  osteomyoplastic  transtibial  amputation

surgery. The stump length for subject 1 was 15 cm and that of subject 2 was 17 cm and the residual stumps were 33.7 % and 36 %

of  the  sound limb respectively.  The  subjects  had  reported  no  history  of  diagnosed  musculoskeletal  and  neurological  pathology.

The subjects reported independent ambulation with medium to high daily activities. The amputees had been using a passive limb

for the past two years. The criteria for inclusion was based on the amputees using the assistive device in a laboratory testing envi-

ronment and in the community effectively. This eliminated the need to train the subjects on how to use the limb prior to the exper-

iments. Also considered was the need for participants with a comfortable surface bearing socket which utilises the vacuum system
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and had no medical history related to the limb injuries or comorbidities that could affect gait, joint angles or electromyography sig-

nals.

Apparatus and Data Acquisition

The  experiments  were  carried  out  at  the  Human  Motion  Analysis  Unit,  Central  Analytical  Facilities,  Stellenbosch  University,

South Africa. Vicon Nexus Motion Systems was used to capture the three dimensional data. A wooden floor was used to provide a

smooth  and  soft  walking  platform  hence  improving  the  safety  of  the  participant  in  the  unfortunate  event  of  a  fall.  Three  force

plates were correctly positioned at the middle of the walk way. The 3D positional data was also simultaneously recorded at 200 Hz

using the Noraxon Myomotion System, USA. The synchronisation of the Myomotion system and Vicon Motion system data en-

abled data labelling as the Myomotion had a video recording system. The system was coupled to external triggers for initialising

the system and automatically record the gait.

Procedure

The experimental protocol was explained both orally and in writing to all participants before written consent was obtained. The

proposed system was expected to predict the intended limb movement. Hence, every limb movement was systematically associated

with an expected activity to be performed. To develop a data set for the design parameters, the participants performed the follow-

ing mobility related activities in the laboratory:

Standing with both legs spread and feet pointing forward during calibration procedure.

Walking with sEMG sensors, IMU sensors and reflective markers (Gait analysis and EMG Analysis were carried out

simultaneously). The Vicon Nexus system and the Noraxon Motion system were simultaneously used in order to provide

validation data.

Sitting with sEMG sensors and performing dorsiflexion and plantarflexion movements using amputated leg.

Much attention was given to the foot, ankle, pelvis and thigh anatomical landmarks so as to clearly identify the ankle, knee and hip

angles  during  gait.  The  data  sets  were  stored  as  c3d  files  for  further  processing.  The  subjects  were  given  enough  time  to  walk

around the laboratory and testing envelope so as to acclimatise with the environment. The subjects were tasked to perform 10 walk-

ing activities along a 10 m walking platform which had force plates mounted on the floor. The subjects were tasked to perform nor-

mal gait without any prescribed walking speed.

A pilot study was carried out to determine the best possible duration of each activity. The findings were similar to [14], where the

average stride duration was 5.6 s and each step duration was 1.2 s, hence the average velocity was 1.5 m/s. The recording equip-

ment was sampling at 1500 Hz. Therefore, to achieve sufficient data sets, a minimum of 196 s per activity was deemed sufficient.

This was an average of four minutes of walking and provided an average of 653 windows. Each window length was 350 ms. There-

fore, each activity lasted about five minutes and every activity was repeated ten times. That is an average of twenty minutes of parti-

cipation.

Statistical Analysis and Data Processing

The reduction of raw motion data was carried out using Noraxon MR3® software. A 2nd order Butterworth filter was used for the re-

moval of specious markers and filtering the data using a cut-off frequency of 15 Hz. Temporal-spatial data such as speed, stance

percentage, and step length was determined. Signal parameters such as mean, peak and minimum values were also determined. Ki-

netic data such as vertical ground reaction force and ankle, knee, and hip powers was compared with normative data [15].

Furthermore, Matlab functions were developed for post processing of the data and statistical analysis. The acquired data was anal-
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ysed for skewness using the Pearson’s coefficient of skewness;

Pearson' s coefficient of skewness, 

Where xSD is the standard deviation, xmean and xmode are the mean values and mode of the variables. The data was considered

normally distributed for . A paired t-test of unequal variance (level of significance, p < 0.05) was performed

to determine whether there are significant differences between a normal subject and an amputee with a passive limb. The data was

then evaluated to provide normative information for the amputee population when performing ambulatory related activities.

Results

The use of state of the art recording equipment such as the Noraxon Myomotion System and processing the data in MR3® min-

imised the need for excessive filtering. The sEMG signals recorded in MR3 system were exported to Matlab as csv files for further

pre-processing. The results presented in this section include the characterisation of the sEMG signal, inertial measurements and

the classifier performance. The development, training and testing of the pattern recognition control architecture followed the steps

indicated in Figure 1.

Figure 1: Signal acquisition flow, amplification and filtering from selected muscle sites

The filtering of the signal was achieved using Noraxon system at high pass filtering at 15Hz to eliminate noise as a result of skin

movement. The removal of high frequencies was achieved using a low pass filter at 500Hz cut-off frequency. Filtering enhanced sig-

nal processing speed and quality as low and high frequencies due to noise interferences were eliminated.

The sEMG Signal Analysis On Oesteomyoplastic Transtibial Amputees

After amputation it was noted that not all residual muscles have the potential to have sEMG with sufficient power to be used as

control signals. The sEMG signals recorded from the available three channels are illustrated in Figure 2.
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Figure 2: Comparison of mean amplitudes of rectified sEMG signals for the amputated and non-amputated leg

The active electrode had 15 Hz high pass filters. However, the signal presentation in Figure 2 was achieved after post-processing in

Matlab using a 2nd order Butterworth filter. The active muscles on the amputated leg excludes the Soleus muscle which is dominant

during plantarflexion on the non-amputated leg. In the absence of Soleus, the study utilised the Medialis and Lateralis Gastrocne-

mius and the comparison of the signal power of the Medialis Gastrocnemius muscle and the Soleus Muscle from the non-amputat-

ed leg is illustrated in Figure 3 below.

Figure 3: Comparison of signal power [W/Hz] between Soleus and Medialis Gastrocnemius muscles

The extraction of sEMG signals from an amputated leg is a challenge. The skin movement and changes in skin impedance con-

tributed immensely to signal acquisition challenges. The effects of noise in the signal is illustrated in Figure 4.
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Figure 4: Comparison of a cable movement artefact and a clean signal during normal gait

The noise signal has direct effect on the quality of the extracted features and reduce the classification accuracy of the pattern recog-

nition system. In order to achieve a clean signal, the surface area was cleaned using alcohol and the electrodes were firmly fixed on

to the skin. However, issues regarding skin impedance could not be further improved. The quality of the sEMG signals used from

the three channels is illustrated in Figure 5.

Figure 5: Filtered and rectified sEMG input signals to the feature extractor

The  processed  signal  features  were  then  used  to  extract  relevant  signal  features  that  could  improve  distinction  between  dorsi-

flexion and plantarflexion movements.

Feature Extraction

The signals received by the controller from the analog front end were in vector format. As a result, data segmentation was initially
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implemented in order to improve the reliability of a feature vector. Furthermore, windowing positively affected the overall com-

plexity and processing time of the architecture. When the data was recorded, it was in the form of a stream of digitalised values in

a channel format. However, for analysis to be carried out there was a need to develop a window which focused on the motion of in-

terest. As a result, a segment was regarded as a window where the features were extracted. The summation of all windows resulted

in the length of the original signal. The analysis was applied to every window which was presented as a row within the feature vec-

tor and the result was a column of features for every window.

Features extracted include among them mean, standard deviation, root mean square value, mean absolute value, mean absolute de-

viation, zero crossing and slope sign change. The 250 ms window size with a 30 ms overlapping window was implemented and the

processing time was less than 300 ms per window, as recommended by ISEK and SENIAM standards. The recorded signal length

was restricted to over 17820 samples per exercise and this was done so as to achieve large data sets within small number of exercis-

es so as to minimise the set-up times. The segmented data was then structured into a table format representing a matrix of m by n

rows and columns. The rows m represented the signal window or segmented data. Then the selected features were applied for ev-

ery window (row of values). The total number of samples in a window, Nsw, were determined as:

where tw is the window length processing time and, for this study tw = 250 ms and Fs was the sampling frequency which was 1500

Hz. Using these values, the derived number of samples in a standard window was 375 samples, as shown in Figure 6.

Figure 6: Window segmentation during ankle movement

The extracted feature values were combined into a single data set, xfeat, which was then used as an input data set to the classifier. A

total of 11 extracted features were used to develop the feature vector. As a result, the total features for the whole control architec-

ture were a product of a number of channels, N, and features per channel, xnf, such that the feature vector had a total number of

variables given by:

These features, xF, were then used as an input vector to a classifier. The reliability of features to clearly provide distinction was eval-
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uated using scatter plots as illustrated in Figure 7.

Figure 7: Feature analysis for sEMG signals from the Tibialis Anterior muscle

The behaviour of features however differed from one muscle to the other as illustrated in Figure 8 during the analysis of sEMG sig-

nals from Lateralis Gastrocnemius muscle.

Figure 8: Feature analysis for sEMG signals from the Lateralis Gastrocnemius muscle
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Figure 9 illustrates the use of rms and std of the signals to differentiate between dorsiflexion and plantarflexion movements. How-

ever, these two features were not sufficient to provide convincing classifier performance therefore eleven more features were test-

ed.

Figure 9: Using std and rms features to differentiate dorsiflexion and plantarflexion

It was deduced from the standard deviation (std) and root-mean-square (rms) values, extracted from labelled data for dorsiflexion

and plantarflexion, that a hyperplane could be implemented. The linearity of the data was sufficient enough, to suggest Linear Sup-

port Vector Machine (LSVM) as the possible classifier. Therefore, all that was needed was to develop the optimal hyperplane that

could maximise classifier performance even in the event of poorly presented features.

Classifier Performance

The performance of a classifier is determined by quality of the signal. However, the quality and choice of feature vectors also have

an influence on the classifier performance in terms of response time, classification accuracy, specificity and sensitivity. The under-

lying principle for LSVM was to maximise the margin around the separating hyperplane by increasing the separating distance, d as

illustrated in Figure 10. These support vectors (SV) had the capability of shifting the hyperplane, HP0, when manipulated as com-

pared to the other data points which were far from the hyperplane and not within the distance, d. The main role of the LSVM algo-

rithm was to optimally determine the position of the hyperplane and widening the distance, d. Therefore, the problem becomes an

optimisation problem which was solved using an optimisation technique. The input to the LSVM was a vector of features (xmean, xstd

,…, xISS ) extracted after application of PCA dimensionality reduction technique. The resultant output from the machine was a set

of weights, wi. Therefore, the hyperplanes were represented as follows:

Where w, was the weight vector, x is the input vector (features) and b was the bias.
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Figure 10: Illustration of LSVM technique on selected features.

Hence the HP0 was regarded as the median, where w∙xi+b=0. Therefore d+ was the shortest distance to the closest positive point,

while the shortest distance to the negative point was regarded as d- as a result |d+|+|d-|=d, which is the margin of separation that

needs to be increased so as to optimise classifier performance. Assuming the generalised approach that the distance, d from a point

(x0, y0) to any line Ax+By+c=0 on a Cartesian plane is be represented by;

And taking into consideration the hyper planes representing the support vectors, then the distance ,d+ between HP0 and HP1 is de-

rived as;

As a result the total distance, d between HP1 and HP2 was given by;

Therefore when we maximised the margin, we simply maximised ‖w‖ given that there are no additional data points in between the

two extreme hyper planes HP1 and HP2 such that;

Therefore the Linear SVM classifier for 2D discriminant was built on the basic form of;

For LSVM only the weight, w was returned after training for the classification of new EMG data which was presented as a vector of

23 features, x1, …, xn. Therefore for linearly separable features;
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Where αi is a slack variable, xi is the support vector and the data point is represented as (xi,yi). During classification, 20% of the da-

ta set was used as validation data and 80% as training data. Each data set had approximately 388 observations, thus an average of

124,160 windows were used in the study during the development of the control architecture. There were several classifiers men-

tioned in the literature with regard to myoelectric signals classification. As a way of determining an optimum classifier, several clas-

sifiers were tested. Although the LSVM was the targeted classifier, Matlab Classification Learner was used to evaluate the perfor-

mance of other classifiers on labelled data and the results are presented in Figure 11.

Figure 11: Average classifier perfomance based on all 11 features per channel in a 33 fature vector

Although all classifiers performed fairly good, the average processing time was then determined in an effort to further compare the

classifiers. Figure 12 illustrates the average classifier processing times.

Figure 12: Average classifier processing times based on all 11 features per channel in a 33 fature vector

The Discriminant classifier had challenges with the nature of the features as a result it recorded 0 % classification accuracy. After

the  determination  of  classification  accuracies  and  processing  times,  dimensionality  reduction  was  implemented  using  Principle

Component Analysis (PCA) in an effort to further reduce the processing times and improving classifier performance. The result-
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ing classifier accuracy is illustrated in Figure 13.

Figure 13: Classifier performance after the application of dimensionality reduction technique

Although there were notable changes in classifier accuracy, the processing times were also of major concern. Therefore, the result-

ing classifier performances are illustrated in Figure 14.

Figure 14: Classifier processing times after implementing PCA dimensionality reduction technique.

The Linear Discriminant classifier was able to classify the data after the removal of some features based on auto-regression coeffi-

cients. Although the performance of the classifier was reported in terms of classification accuracy and response time, other charac-

teristics that were evaluated include sensitivity and specificity. These were clearly defined by the True Negative (TN), False Nega-

tive, (FN), True Positive (TP) and False Positive (FP). FN was regarded as invalid and TN as accurate.
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Therefore:

The final averaged LSVM classification performance on test data is illustrated in Table 1 and Table 2. The classes of motion were

namely (1) Dorsiflexion, (2) Plantarflexion and (3) Resting. Table 3 shows the confusion matrix of the classifier performance with

a model accuracy of 99.25%. Figure 15 presents the classifier performance on labelled data.

Figure 15: LSVM confusion matrix based on known labelled data.

Table 1: Classifier characteristics

Class 1 2 3

True Positive [TP] 262 101 119

False Positive [FP] 1 0 2

False Negative [FN] 1 1 1

True Negative [TN] 221 382 363

Table 2: Precision, sensitivity and specificity of the LSVM classifier on unknown data

Class 1 2 3

Precision 0.997881 1 0.97987

Sensitivity 0.996148 0.989035 0.995495

Specificity 0.997409 1 0.993989
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Table 3: Confusion matrix of average trials based on unlabelled data

Rest 53.99843 0 0.116822

Dorsiflexion 0.997881 20.84382 0

Plantarflexion 0.996148 0.256677 24.57184

Rest Dorsiflexion Plantarflexion

Discussion

The performance of a control system architecture is highly governed by performance of several modules within the system [16].

Hence forthwith, the quality of the input signal to the control system is of fundamental importance. The signal infidelity is one of

the major concerns in myoelectric control systems. Figure 1 summarises the initial signal manipulations implemented before fea-

ture  extraction during  signal  acquisition.  The  active  filters  were  only  implemented to  remove  the  DC component  of  the  signal.

Sources of noise in sEMG acquisition are skin movement, changes in skin impedance and 50 Hz line interference. A high pass fil-

ter with a cut-off frequency of 15 Hz was able to remove low frequencies which are usually caused by skin and cable movements as

illustrated in Figure 4 where the movement artefact was compared to an EMG signal. A 500 Hz Low pass filter was then imple-

mented to complete a reliable 15-500 Hz band pass filter. The filtering was achieved with the aid of a 2nd order Sallen-Key architec-

ture. Furthermore, an ADS1298 based signal processing module was implemented and the rectified and amplified signal is illustrat-

ed in Figure 5. A notch filter was not implemented to remove the 50Hz line interference as it was recommended by the ISEK and

SENIAM standards that it would affect the signal quality although recent studies [17] highly recommends. The initial results of us-

ing a notch filter resulted in poor classifier performance.

Amputation of the lower limb is regarded as the last alternative for rehabilitation. However, in the event of lower limb amputation,

the residual muscle within the stump will no longer possess the same signal strength [4] as the non-amputated leg as illustrated in

Figure 2. The results shown in Figure 2, revealed that only Tibialis Anterior, Medialis Gastrocnemius and Lateralis Gastrocnemius

muscle are the only muscles which could provide sEMG signals that could be used as input control signals to the control architec-

ture. The amputation procedure made it difficult to access the Soleus muscle on the residual stump. However, Soleus muscles on

the non-amputated leg possesses an average of 300% more energy and amplitude than the Medialis Gastrocnemius muscles as illus-

trated in Figure 3. The clear distinction between muscle performances is illustrated in Figure 5, and it is evident that Tibialis Ante-

rior  is  dominant  during  dorsiflexion  and  Gastrocnemius  muscles  (Medialis  and  Lateralis)  are  dominant  during  plantarflexion

movement. Such a distinction and stochastic nature of the sEMG signal proves that pattern recognition algorithms could be imple-

mented.

One of the modules within a pattern recognition-based control system is the feature extractor. The success of the classifier highly

depends on the quality of features extracted from the signal [18]. The features considered in this study were adapted from the fea-

tures  suggested  by  [19],  which  were  an  extension  of  the  features  used  by  [20].  Additionally,  the  modified  Hudgins  Features,

suggested by [19], namely the Modified Mean Frequency (MMNF) and Modified Median Frequency (MMDF), were also consid-

ered so as to increase the feature vector with the aim of improving the classification accuracy. Windowing was applied with each

window comprising of 375 samples as illustrated in Figure 6. The windowing technique [21] enabled easy extraction of the eleven

features per channel resulting in thirty-three features. The larger the feature vector, the better the classification accuracy as illustrat-

ed in Figure 11. However, large feature vectors increase the processing times for certain features as shown in Figure 12. Dimension-

ality reduction technique implemented using PCA resulted in 30% reduction in processing time for LSVM as illustrated in Figure

14. This technique had no effect in terms of classification accuracy as shown on the performance of LSVM on Figure 11 and Figure

13 where the classification accuracy remained 100 % on average on labelled data.

Although classification accuracy is the main characteristic used in the literature to explain the classifier performance, sensitivity
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and  specificity  are  other  characteristics  that  assist  on  determining  the  classifier  performance  [22]  as  illustrated  in  Table  1  and

Table 2. The sensitivity of the architecture illustrates how the system has the capability of changing the output signal based on the

changes in the input signal. The specificity was above 99% for all movement classes, thus the architecture has the capability of as-

signing a decision from knowledge to a specific movement without assigning it to another movement class. The average classifica-

tion accuracy of  the  LSVM system was  100% on known data  as  in  Table  3.  However,  the  LSVM achieved a  fair  99.25% on un-

known data.

In  comparison  with  other  previous  studies,  [20]  used  an  Artificial  Neural  Network  and  achieved  91.2%  for  non-amputees  and

85.5% on amputees and [23] reported 91.5% with 1 269.4 ms processing time which is almost four-fold the expected processing

time. Other results were reported by [24] of 94-99% which was an average of 96.4% using upper limbs sEMG values. However, the

difference is that the lower limb has to deal with supporting the body during locomotion which increased the probability of skin

movement artefact. Therefore, the 0.75% classification error could not be reduced through continuous training due to variability

in skin impedance,  movement artefact  and power line interference.  The achieved 99.25% classification accuracy is  sufficient  for

the clinical viability of the device.

The available literature revealed a lot of conflicting facts with regards to which feature domain to use between time features and fre-

quency domain features. Ever since the 1990s [20] up to the recent studies [25], the size of a feature set has been a subject of debate

[19], [26-28]. However, there is a common trend among all studies that the feature set was large enough to improve classification

and small  enough to  reduce  computation  complexity.  This  has  resulted  in  hybrid  systems  as  new and existing  techniques  were

merged together to improve classifier accuracy. It is, however, the use of several signal features in a classifier that usually enables

robustness in a system although it increases transient response [29].

Conclusion

The  use  of  pattern  recognition  control  architectures  presents  an  opportunity  to  implement  machine  intelligence.  However,  the

study revealed that there are several issues that govern the performance of machine intelligence in a control architecture. These fac-

tors  include the quality  of  the input signal,  signal  acquisition,  processing techniques employed and the processing power of  the

main controller. It is, however, the performance of the pattern recognition technique used that determines the overall reliability of

the control architecture.

A pattern recognition system based on myoelectric signal was developed and validated. The LSVM was modelled to accurately clas-

sify three motion classes (dorsiflexion, plantarflexion and resting) within the sagittal plane. The architecture is also composed of

the principle component analysis (PCA) as a feature reduction module used during the training of the model. The use of PCA re-

duced the computational time and increased classification accuracy. The model classification accuracy on labelled data was 100%.

However,  on testing with unknown data,  the architecture achieved 99.25% accuracy.  The 0.75% error was attributed to variable

properties of noise artefacts from cable movement, skin impedance and hardware components. Only the power-line interference

remained constant across all data samples.

Therefore, the aforementioned results revealed that a robust pattern recognition control system is capable of classifying gait move-

ments during walking, even in the event of noise interference.
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