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Abstract

In this paper, a mathematical five-dimensional dynamical system involving a SVEIR model of infectious disease transmission in a
chemostat is proposed. A profound qualitative analysis is given. The analysis of the local and global stability of equilibrium points is
carried out. It is proved that if R >1, then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if
R <1, then the disease-free equilibrium is globally asymptotically stable in [R®.
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Introduction

Understanding how an epidemic develops once it has emerged is crucial if we want to hope to control it. To do this, various models
have been developed which highlight (in particular) the crucial role played by the parameter R, describing the average number
of new infections due to a sick individual. As one can imagine, if this number is less than 1 then the epidemic will tend to go out,
whereas it will be able to persist even to extend to the entire population if R >1. However, these classical models obviously have
their limits and the parameter R does not really describe on its own the future of an epidemic in a real population (assuming
that we know how to find it in this case). For example, the fact that a population is always finished induces random effects all the
more marked that the population is small. On the other hand, most populations also have a structure in the form of groups within
which individuals are closer (and therefore more easily infected) than between groups. All this requires finer models and the
development of the tools necessary for their study.

In a chemostat, an epidemic model can also be understood as a competition model where various pathogen strains compete for the
the same susceptible host as only resource [1,2]. Such models predict the strain with the largest basic reproduction number to be the
winner. In, it is proved that this prediction amount to the same if the per capita functional responses of infective individuals to the
density of susceptible are proportional to each other but that they are different if the functional responses are non-proportional [2].

The SVEIR model of Wei et al. incorporates the notion of delay which consists in admitting that individuals can not pass from one
compartment to another directly without observing a certain time, said delay [3]. Then the dynamic behaviour of the model is studied
under a so-called vaccination strategy (pulse vaccination). The strategy is to vaccinate individuals of a certain age group, not once, but
several times by separating doses of a definite time.

In this work, I shall revisit the model based on a standard SEIR model proposed firstly by Hethcote, modified by Gumel et al, and Wei
et al, and later studied by Nkamba et al. but in a continuous reactor, from an applied point of view [3-12]. The contents of this paper
is arranged as following. First, we present, in Section 2, a description of the model to be investigated. Then existence, uniqueness and
local stability of the equilibrium of the considered model are analysed. Global stability and asymptotic behaviour of the 5D-system
are then discussed. Finally, in section 3, numerical simulations are given in order to confirm the given results.

Mathematical model and results

The considered population is subdivided into five subgroups of individuals. Each group has different epidemiological significance:
the compartments of Susceptible, Vaccinated, Exposed, Infected, and finally the compartment of Recovered, which are respectively
represented by the following letters S,V,E,I and R. The exposed compartment takes into account the elapsed time between the
moment when the susceptible individual is infected and the moment when it becomes infected.
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Figurel: Deterministic SVEIR Model in a chemostat

The susceptible, the vaccinated, the exposed, the infected and the recovered individuals are exposed to a natural mortality other
than one caused by the disease concerned by this study, with respective positive mortality rates mg,m,,m;,m; and M.

As in general, the immunological status of the population of each compartment is different, mortality rates must be different. DS
describes the rate of recruitment of susceptible (as input), this includes newborns who are born susceptible in the type of infection
considered. The transmission coefficient, f3, is the number of contacts made by an infectious individual per unit of time multiplied
by the probability that contact with a susceptible person leads to an infection. ¢ is the rate at which individuals become infectious
after spending some time in the exposed compartment. P is the vaccination rate. y is the rate at which infectious agents recover
their health. We consider here that the disease has a horizontal transmission. infection is transmitted from infected individuals to
susceptible individuals on the one hand, and infected individuals are vaccinated on the other hand because the vaccination does
not confer total immunity. The susceptible ones become infected by the relation 3SI and the vaccinated become infected with the
relation OB VI, where 0€[0,1]. This means that 1-6 is the effectiveness of the vaccination.

The compartmental scheme of this model is illustrated by the diagram given in (Figure 1).

We take into account both, the dilution rate and all individual specific mortality (maintenance) rates. Only susceptible individuals
are introduced into the reactor with a constant dilution rate D and an input concentration S, (Figure 2).

The model developed here has then five components, S, VE,I and R known as 'SVEIR’ model of infectious disease transmission in
a chemostat. The population are classified as Susceptible compartment (S), Vaccinated compartment (V), Exposed compartment
(E), Infected compartment (I), and Recovered compartment (R) and modelled by the following five-dimensional dynamical
system of ODEs:

S =D(S,-S)-(m,+p)S-pSI,

V. =pS—(D+m,)V-6pVI,

diii=p (+0 )-( + +e) , (1)
I =¢E—(D+m, +7)I,

R =yl —(D+m,)R,
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DS, DS, V,E,IR)

Figure 2: “SVEIR” epidemic model in a chemostat

1
with positive initial condition (S (0),7(0),E(0),1 (0),R(0)) e R’ where p,3,0,— and % are the vaccination rate, the mass action
&

incidence rate, the vaccination factor reducing the risk of infection after vaccination, the average duration of latency in compartment
E before progressing to compartment I and the average time spent in compartment I before recovery (R), respectively.

mg,m,,m;,m,and m, are the mortality rates of , susceptible, vaccinated, exposed, infected and recovered individuals, respectively.
Generalities

The basic reproduction number is denoted by R. This concept is now unanimously recognized as a key concept in
epidemiology[13,14]. It is defined “heuristically” as the average number of new cases of infection, caused by an average infected
individual (in the course of its infectious period) in a population that is fully susceptible. For the last thirty years, has been part of
the majority of research using mathematical modeling.

Generally, if R<I, then an individual infects on average less than one, which means that the disease will disappear from the
population eventually. In contrast, if R>1, then the disease can spread in the population. Determining according to the parameters
of the model thus makes it possible to calculate the conditions under which the disease is spreading.

D S in V — p D Sin
D+mg+p’ (D+mV)(D+mS+p)’

Define the following parameters: § = E=0,7 =0 and R=0.

The basic reproduction number R, in this case, is given by:

~ eB(S+o7)
R_(D+mE+5)(D+m1+y)' @

By replacing § and /7 by their expressions in (2), one obtains:

DSingﬂ
Ry =R|,= : (3)
(D+my+¢&)(D+m, +y)(D+my)
When there is no vaccination ( p=0 ), system (1) without the fifth equation (V) becomes the standard SEIR model with
DSingﬂ
(4)

SR D D)D)

R?, the closed non-negative cone in R’, is positively invariant[4,5,6,7,8,9,11,18] by the system (1). More precisely, let
m =iiiiii (mg m, m; m, my), then I get
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Proposition 1:

1. For all initial condition in R’ , the solution of system (1) is bounded and has positive components and thus is defined for all £>0.

2. System (1) admits a positive invariant attractor set of all solution given by

QI:{(S,V,E,I,R)ERi /S+V+E+I+R< D Sm}.
D+m

Proof.

1. The positivity of the solution is proved by the fact that :

If$ = 0 then S = DS, >0 and if V=0 then V=pS >0.If E = 0 then E=BI(S+6V)>0 and if | = 0 then [ = ¢E > 0. Finally, if R = 0
then R=y7>0.

Next I have to prove the boundedness of solutions of (1). By adding all equations of system (1), one obtains, for

U + + + + =

_, asingle equation :

D+m "

S+V+E+I+R

D(SM—S—V—E—I—R)—m S—-mV-mE-mI-mR

< D(Sm —S—V—E—I—R)—mS—mV—mE—mI—mR

~.
Il

NN(th)(DSmSVEIR]
D+m

< —(D+m)T
thenS+V+E+I+RsD+mSm+(S(0)+V(O)+E(O)+I(O)+R(O)—DfmSm)e(D“")’. (5)

Since all terms of the sum are positive, then the solution of system (1) is bounded.

2. The second point is simply a direct consequence of equality (5)

Proposition 2: System (1) admits a unique disease-free equilibrium E :(S,V’ E. I, R) and a unique disease-persistence
(endemic) equilibrium E = (S*, V*,E*,I*,R*) as possible equilibrium points with §*, V", E*,I",R* > 0.

Proof. Equilibrium points of system (1) satisfy

0=D (S, -8)—(m,+p)S—-pBSI,

0=dii-( + ,) —68 ,

0=pI(S+6V)—(D+m,+¢)E, (6)

0=¢cE—(D+m,+y)I,

0=yl —(D+my)R,

which means
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DS,
:(D+ms+p+ﬂ1)’
_ pS _ pDS,,
(DRMN 68I) (D m, OpI)(D m, p pI)
BBl (sior)= BDS, (D+m, +6p+6BI) . o
(D+m; +¢) (D+my+e)(D+m +p+pl)(D+m, +6BI)
I & P eBDS,,(D+m, +0p+6BI) /
(D+m,+y)  (D+m,+y)(D+m,+&)(D+m +p+pPI)(D+m,+0PI)
R 14 I 78/3DS,.”(D+mV+(9p+9ﬂI)

1
(D+my)  (D+mp)(D+m,+y)(D+m,+¢&)(D+m +p+pBI)(D+m,+6pPI)
Using only the fourth equation, I obtain:

DS, (D+my, +0p+06pI)

I=(D+m,+7)(D+mE+g)(D+ms+p+ﬁl)(D+mV+0ﬂ1)]'

As all parameters are assumed to be non-negative then either I = 0 or

eBDS,{D+m +0p+0Bl)=(D+m +y)(D+m +&)(D+m +p+pBI)(D+m +6pI).

D in S DS
« I I = 0 then from system (7), one obtains R=0,E=0,8§ =——"— and V' = — p = PP
D+mg+p (it ) (+ ) + s+ )
This equilibrium is the so called disease-free equilibrium denoted by E= (§ R 17, E R I,R ) where S =—"171 ,
_ DS, — - —
V= PO ,E=0,7=0and R=0.
(D+m, )(D+mg+p)

« If then one must have €8DS,{D+m +0p+0pl)=(D+m +y)(D+m +&)(D+m +p+pI)(D+m +6BI).

This can be reduced to

O8> (D+m,+y)(D+my+&) I’ +(B(D+m,+y)(D+my+&)(0D+6m +60p+D+m,)
—e0B°DS, ) +(D+m,; +y)(D+m,+&)(D+m, +p)(D+m,)—-eBDS, (D+m, +6p)=0

having the form
a[2+bl+c=0, (8)

where

a=6B>(D+m,+y)(D+m;+¢&)>0,

b=p(D+m,+y)(D+m,+¢e)(0D+60m +O0p+D+m,)—ef DS,
and
c=(D+mzy)(D+m +¢&)(D+m +p)(D+m )-¢BDS (D+m +06p).

I write b and ¢ in the following forms
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o(D ) D+m, OR
b:ﬂ(D+m,+;/)(D+mE+g)(D+mS+p)(D+my)( ((D++mWVL++pp))(Jlr)+:rnm) _(D+m +9p)j

zgﬁ(

D+m,+y)(D+my+ée)(D+m +p)(D+m,)( O(D+m +p)+D+m, (D+my +0p)-R
(D+m,,+9p) 9(D+ms+p)(D+m,,)

O(D+m +p)+D+m,

O(D+m +p)(D+m,)

= e0f’ Dgfﬂ( (D+mV+9p)—R]

=£9ﬁ2DSi”(D+mV+,__?P (D4m)(D+m, +6p)
R didi o, 6( + o+ )+ )

+(1 —R)J
and
c=(D+m,+y)(D+m,+e)(D+m,+p)(D+m,)(1-R).
If R > I then ¢ < 0 and since a > 0, Equation (7) admits at most two solutions where only one of them is non-negative (I') and that

can be considered here due to proposition 1.

Now If R < I then ¢ > 0 and since a > 0, Equation (7) admits at most two solutions having the same sign. Butif R < I then b > 0
then both solutions of (7) are negative and then it can’t be considered here due to proposition 1.

Then there exists at most one disease-persistence (endemic) equilibrium E =SV ,E"I',R") with E'=(S",V",E", ' ,R").
Note that S*,7",E" and R" can be expressed on I' from system (7). This completes the proof.

in?

Corollary 1: (2, ={(S,V,E,I,R)6Ri /S+V+E+I+R< S. 'SSE,VSV} is a positive invariant

D+m

attractor set of all solutions of system (1).

Proof. I proved in Proposition 1 that €, is a positive invariant attractor set of all solution of system (1). Now, since S(¢)<0 for
S(t)>5 then liminf §(¢)< S .

For a positive constant & > 0, and for a given initial condition, there exists 7' > 0 such that S(¢)< S+¢& forall t 2T .

Then V(t)<p(§+§)—(D+mV)V=—(D+mV) V—fD(i—j;:j forall t >T .

Then by applying the theory of differential inequalities [2], I obtain

S+ S +
V(1)5M+ V(O)—p( é:) e*(DerV)t. o
(D+m,,) (D+m,,)
S . 5
One obtains therefore [iminf V(t) < Z)(i—;f; . This holds for all £ > () and so liminf V(t) < (Di—ml,) =V

This completes the proof.

The solutions of system (1) are exponentially convergent towards the set 2, and we are interested in the asymptotic behavior of
these solutions. It is enough to restrict the study of the asymptotic behaviour of system (1) to €3, . In fact the asymptotic behaviour

of the solutions of the restriction of (1) on €2, will be informative for the complete system.

From Equation (3), I obtain the following result.

Proposition 3: R <R, if and only if H(D + my ) < (D +my ).
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Proof.
~ DS, e(D+m, +6p)
(DRMNX &)(D m, y)(D mg p)(D my,)
_(D+my, +0p) DS, &f3

(D NN p) (D mg 8)(D m, 7/)(D m,,)
:(D+mV+0p)(D+mS)

(D+ms+p) (D+m,,)
<R,

if and only if (D NN Hp)(D ms) (D mV)(D mg p) which equivalent to @p(D+mg)<(D+m,)p. This
completes the proof.

The value of R determines whether there exists an endemic equilibrium or not (as in [1], Theorem 2.3).

Theorem 1: The disease-free equilibrium E exists always and it is unique. If R < 1, then the disease-free equilibrium point F is
locally asymptotically stable and it is unstable if R > 1.

Proof. The Jacobian matrix at a point (S,V,E,,R) is given by:

~(D+mg+p)-BI 0 0 -BS 0
P —(D+m,)-6B1 0 -6pV 0
iiiil| B -+ g+e) B( +0) 0
0 0 e ~(D+m,+y) 0
0 0 0 y —(D+my)
The Jacobian matrix evaluated at £ is then given by:
—(D+mg+p) 0 0 -pS 0
)4 —(D+m,) 0 -6Bv 0
J=|0 0 ~(D+my+g) B(S+6OF) 0
0 0 £ —(D+m,+y) 0
0 0 0 % —(D+my)

J admits five eigenvalues. The first three eigenvalues are given by 4, = — (i ¢+ )<0,4,=—( + ,)<0,4=—( + ,)<0
. the other two eigenvalues are those of the following sub-matrix

~(D+my+s) B(S+06V)
£ —(D+m, +7)
where the characteristic polynomial is given by
P(SSN?+(2D+my+m,+ + ) +(1-R)(D+m,+ )(D+m, + ).
It clear that the roots of P(4)have negative real parts if and only if R < 1. It follows that the disease-free equilibrium E is locally
asymptotically stable whenever R < 1 and unstable when R > 1. This completes the proof.
The global stability of the disease-free equilibrium F is given in the following theorem (cf. ([5]).

Theorem 2: If R <1, then the disease-free equilibrium E is globally asymptotically stable. If R > 1, then the disease-free equilibrium
E is unstable.
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Proof. Consider the following Lyapunov function:
F =5E+(D+mE +g)l

with Lyapunov derivative,
F=¢E+(D+m,+¢&)l
= MN&S+ V) I—=(D+my+ )E)+(D+my+ ) E—(D+m,+ )I)
NS o)l (D m, s)(D m, y)I
s ) ( )

S+9V) )_IJI

D+m, +g D+m,+7/

S+6V)

(D+mE+g D+m, +y

=(D+my+¢&)(D+m,+y) (

<(D+my+¢)( D+m,+7/[ )—IJI since S<S,V<V

=(D+my+¢&)(D+m,+y)(R-1)I,V(S,V,E,I,R)€Q,.

Since all parameters of the model are non-negative, it follows that F <0 for R <1 with F=0 onlyif I = 0. Hence, F is a Lyapunov
function on Q,. Further, by Corollary 1, €,is a compact, absorbing subset of R’, and the largest compact invariant set in

W V EI R) €eQ, F= } is the singleton {E } . Therefore, by the Lasalle’s invariance principle (see, for instance, Theorem
3.1] and for other application), every solution of system (1) with initial conditions in R’ converges to E ast> 4o [11,15].

The global stability of the disease-persistence (endemic) equilibrium E"is given in the following theorem.
Theorem 3: If R > 1, then the disease-persistence equilibrium E* = (S VLELI *,R*) is globally asymptotically stable. If R <1
, then the disease-persistence equilibrium E’ is unstable.

Proof. Consider the following Lyapunov function:

(gl (g2 ()

The equilibrium E* is the only internal stationary point of system (1). The function V(¢) admits its minimum value

v —S*+V*+E*+M[* when § =S*,V = V*,EZE*,]ZI*,and V(t) +0 at the boundary of the

min
&

positive quadrant. Consequently, E'is the global minimum point, and the function is bounded from below.

The derivative, of V(t), along solutions of system (1) is given by

v=[1-S g 1-D p a1 E g Prmetef L
S v E P I

*

=(1—%*j(0 (S, -8)-(m, +p)S—ﬂIS)+{1—V7j(pS—(D+mV)V—¢9ﬂIV)

+[1—%*J(ﬂl(S+HV)—(D+mE +5)E)+W(l—§j(gE—(D+m, 7))

=DS, —(D+mS)S—DSin%+(D+mS)S* +pS"+ pIS”

* *

_(D+mV)V—pSV7+(D+mV)V* +OpIV” —,BI(S+¢9V)%+(D+mE +&)E

(D+mE+€ D+m;+e

)(D+m, +;/)I—(D+mE+g)E17+(
£

; j(D+m,+7/)I*
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Using the fact that (S VLELL, R*) is solution of system 7) then the expression of V reduces to

v:(mms)s*_(D+ms)s_(D+ms)%+(D+mS)s*
+(D+mV)V*—(D+mV)%V*+(D+mV)V*

* V S * *
~(D+m WV +(D+m, )V +(D+m, )V ~(D+m,)— ; +,BI (s +or)

*S **S *V S

5

+OpIV" — BI(S + 0V)%+ BI(S"+0V")

RN D w1 (0 me o)pd (DEmere

More simply,
V=(D+mg)S" 2— +(D+my, )V 3—5——1*—1/—3*
S VvV Vs
v S*z LET E
+3 Biiiil — T ——— =
B B g o Z
3050 Ve S E E I
E' I
_gﬂ]*V*%_(Mj(D+m[+;/)I+ﬂI(S*+¢9V*).
&
I obtain finally
V=(D+my)S 2—{—S— +(D+m, )V 3—5——1*—1/—1*
S S Vv VS
ips |3 LS E BT (g VS TVE EL S
S IS E E I vs IV E EI S
Note that
SS S VVS _(SISEET
ss sSvVivsS SIS EE I
and
V'SIVEEIS _

VS IV EE TS

I recall also the following inequality :
X+ X, Xy X, ZRX XX X, X, Xy, Xy, e, X, 20

Since arithmetical mean of nonnegative real numbers is greater than the geometrical one, we have the following inequalities

(10)
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S
S S S
S Vv Vs

Therefore }) < () . Thanks to the stability Lyapunov theorem, one deduces that £* = (S*,V*, EI, R*) is stable. It remains to

show that E" = (S VLELL, R*) is asymptotically stable using the Lasalle invariance principle (see, for instance, [Theorem 3.1]
and for other application).

Define [11,15]

a=[2-2-2
s S
pof3-5 L V5
S vV vs
cof3. 8 I SE EI
S I'S"E E I)

Then one has
V(SWE [ R)= < A=B=C=D=
Using to the above relations, one obtains the following implications.

A=0=>S=5",
(S=S*,B=O):>V=V*,

(S:S*,C:O):(E*zi*j.
E 1

Finally, I obtain

E I
E*

V(SthIE I R)= < S=8 V=V

*

Since in the endemic equilibrium, I have

A=0=>8=S",
(S=8".B=0)=V=V",

. E I
(S:S,C:O):[E*:Fj.
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Let L hen f E*and [ =rI"
€ = — = —,then — an = .
E° 1 " :

For the endemic equilibrium, I get

DS, =(D+mg+p)S +BST,
V) *+l9ﬂ x *,
,81*(S*+9V*):(D+m5+g)E*,
eE =(D+m, +y)I .

iiii=( +

Then I obtain
pS =(D+m, )V +6BVT ,r=1
and therefore I = I'and E = E". Finally

V(S.V.E.LR)N®N (S SV V.E E.I I'R R)

Thus, the largest invariant set contained in {(S VL E I, R) 1V =0} is {E =(8" V" .E".1 *,R*)} . Then the global stability of the
disease-persistence equilibrium E£" = (S", vV ET, R*) follows according to the Lasalle invariance principle (see for an application)
[11,16].

Consider the case where the dilution rate is large enough compared to the natural mortality rates of all individuals which is the
most considered in applied cases. Then by neglecting all mortality rates m,m, ,m;,m, and m,, one obtains:

Corollary 2:

. Q.= (S,V,E,I,R)eRi / S+V+E+I+R=S,;S< D5, V< P, is a positive invariant attractor set
D+p D+p

of all solutions of system (1).

o If R > 1, then the disease-persistence equilibrium E" = (S*,V*,E*, r, R*) is globally asymptotically stable and the disease-free
DS, .. .@.Si,,
D+p D+p
o If R <1, then the disease-persistence equilibrium E* is unstable and the disease-free equilibrium z is globally asymptotically
stable.

equilibrium E :( J is unstable.

Numerical Simulations

We performed numerical simulations for system (1). Four cases were considered. Two of them performing the global stability of
the disease-free equilibrium E when R <1. The other two tests perform the global stability of the disease-persistence equilibrium

E :(S*,V*,E*J*,R*)when R > 1(Figure 2 and 3) [17-23].

| s— 1) | 07
— (1)
!—-Elh
| e [ (£} 0.6

— 1)
— (1]
0.5 | p— 1)
s B 1)
| e 112}
04 | —ri)

6 8 10 0 2 4 ] 8 10
t t

Figure 3: (S(t), V(t), E(t), I(t), R(t)) behaviours for (left)
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S~ iiiEiisiieiias m = m = m = p= f= 0= e= y= R= < and for (right) Sinzl;D:_S;mS:I;
m, =0.1;m =1;m=1;m, =1;p=1;8=5;60=0.3;e=3;y=1,R=0.1801<1. The solution of system (1) converge asymptotically to £. Only
Susceptible and Vaccinated compartiments persist, the other compartments vanish (Figure 4).

45

4

35 — V1]

3

25

ol . s L L L — 0t |
0 5 10 15 20 %5 30 0 2 4 6 8 10
t !

Figure 4: (S(t), V(t), E(t), I(t), R(t)) behaviours for (left) and for (right)

S.ui=10:D=0.1m =Im =0.Lm =Lm =Lm =Lp=1=560=03;6=3;y=1,R=2.0740>1
The solution of system (1) converge asymptotically to E". All compartiments persist.

Conclusion

A mathematical 5D dynamical system modelling an SVEIR model of infectious disease transmission in a chemostat is proposed.
A profound qualitative analysis is given. The analysis of the local and global stability of equilibrium points is carried out. It is
proved that if R > 1, then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if R <1, then
the disease-free equilibrium is globally asymptotically stable in R°.
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