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Understanding how an epidemic develops once it has emerged is crucial if we want to hope to control it. To do this, various models 
have been developed which highlight (in particular) the crucial role played by the parameter , describing the average number 
of new infections due to a sick individual. As one can imagine, if this number is less than 1 then the epidemic will tend to go out, 
whereas it will be able to persist even to extend to the entire population if 1. However, these classical models obviously have 
their limits and the parameter  does not really describe on its own the future of an epidemic in a real population (assuming 

more marked that the population is small. On the other hand, most populations also have a structure in the form of groups within 

development of the tools necessary for their study.
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In a chemostat, an epidemic model can also be understood as a competition model where various pathogen strains compete for the 
the same susceptible host as only resource [1,2]. Such models predict the strain with the largest basic reproduction number to be the 
winner. In, it is proved that this prediction amount to the same if the per capita functional responses of infective individuals to the 

et al. incorporates the notion of delay which consists in admitting that individuals can not pass from one 

et al, and Wei 
et al, and later studied by Nkamba et al.

local stability of the equilibrium of the considered model are analysed. Global stability and asymptotic behaviour of the 5D-system 

Abstract

carried out. It is proved that if 1, then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if 
1 , then the disease-free equilibrium is globally asymptotically stable in 5 .
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Principle 

represented by the following letters S,V,E,I and R
moment when the susceptible individual is infected and the moment when it becomes infected.
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than one caused by the disease concerned by this study, with respective positive mortality rates  , , ,S V E Im m m m  and Rm .

DSin 
describes the rate of recruitment of susceptible (as input), this includes newborns who are born susceptible in the type of infection 

β , is the number of contacts made by an infectious individual per unit of time multiplied 
by the probability that contact with a susceptible person leads to an infection. ε is the rate at which individuals become infectious 

P is the vaccination rate. γ is the rate at which infectious agents recover 
their health. We consider here that the disease has a horizontal transmission. infection is transmitted from infected individuals to 
susceptible individuals on the one hand, and infected individuals are vaccinated on the other hand because the vaccination does 

βSI and the vaccinated become infected with the 
relation θβVI, where θЄ[0,1] θ

are introduced into the reactor with a constant dilution rate D and an input concentration Sin (Figure 2).

S,V,E,I and R known as ’SVEIR’ model of infectious disease transmission in 
S), Vaccinated compartment (V), Exposed compartment 

(E), Infected compartment (I), and Recovered compartment (R
system of ODEs:

(1)

Figure1: Deterministic SVEIR Model in a chemostat
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, , ,S V E Im m m m and mR  are the mortality rates of , susceptible, vaccinated, exposed, infected and recovered individuals, respectively. 

Generally, if R<1, then an individual infects on average less than one, which means that the disease will disappear from the 
population eventually. In contrast, if R>1, then the disease can spread in the population. Determining  according to the parameters 
of the model thus makes it possible to calculate the conditions under which the disease is spreading.

R

individual (in the course of its infectious period) in a population that is fully susceptible. For the last thirty years,  has been part of 
the majority of research using mathematical modeling. 

, , 0, 0in in

S V S

DS pDSS V E I
D m p D m D m p

 and 0R .  

R, in this case, is given by: 

Results 

Generalities

By replacing S  and V  by their expressions in (2), one obtains: 

5 , the closed non-negative cone in 5 , is positively invariant[4,5,6,7,8,9,11,18] by the system (1). More precisely, let 
üüü S V E I Rm m m m m m , then I get 

When there is no vaccination ( p V) becomes the standard SEIR model with

(2)

(3)

(4)

Figure 2: “SVEIR” epidemic model in a chemostat

with positive initial condition  50 , 0 , 0 , 0 , 0S V E I R  where 
1, , ,p  and 

1
 are the vaccination rate, the mass action

E before progressing to compartment I and the average time spent in compartment I before recovery (R), respectively.
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Proposition 2: System (1) admits a unique disease-free equilibrium  , , , ,E S V E I R  and a unique disease-persistence 
(endemic) equilibrium * * * * * *, , , ,E S V E I R  as possible equilibrium points with * * * * *, , , , 0S V E I R . 

Proof. Equilibrium points of system (1) satisfy 

which means

Since all terms of the sum are positive, then the solution of system (1) is bounded. 

then 0 0 0 0 0 .D m t
in in

DDS V E I R S S V E I R S e
D m D m

                  (5)

Next I have to prove the boundedness of solutions of (1). By adding all equations of system (1), one obtains, for 

in
Düüü

D m
, a single equation :

If S = 0 then S = DSin>0 and if V= 0 then V= pS >0. If E = 0 then 0E I S V  and if I = 0 then 0I E . Finally, if R = 0 
then 0R I .

Proposition 1: 

1. For all initial condition in 5 t>0. 

Proof.

2. System (1) admits a positive invariant attractor set of all solution given by

5
1 , , , ,   /  .in

DS V E I R S V E I R S
D m

üüü

in

in

T S V E I R
D S S V E I R m S m V m E m I m R
D S S V E I R mS mV mE mI mR

DD m S S V E I R
D m

D m T

0   ,

,0

,0

0 ,

0 ,

in s
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I

R

D S S m p S SI

üüü

I S V D m E

E D m I

I D m R

 (6)
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Using only the fourth equation, I obtain: 

As all parameters are assumed to be non-negative then either I = 0 or 

I = 0 then from system (7), one obtains 0, 0, in

S

DSR E S
D m p  and in

V V S

pDSpSV
üüü

having the form 

where 

and 

I write b and c in the following forms 

, , , ,E S V E I R  where in

S

DSS
D m p

, 

, 0, 0in

V S

pDSV E I
D m D m p

 and 0R .

.üüüDS D m p I D m D m D m p I D m I

(7)

,

,

,

,

in

s

in

sVV

in V

E VsE

in V

VsEII

in V

R R

DSS
D m p I

pDSpSV
D m I D m I D m p I

DS D m p IIE S V I
D m D m D m p I D m I

DS D m p I
I E I

D m D m D m D m p I D m I

DS D m p I
R I

D m D m D VsEI

I
m D m D m p I D m I

.in V

VsEI

DS D m p I
II

D m D m D m p I D m I

.üüüDS D m p I D m D m D m p I D m I

22

2

 (
0)

I E VsEI

in I E s V in V

D m D m I D m D m D m p D m
DS I D m D m D m p D m DS D m p

2 0,aI bI c (8)
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and 

If R > 1 then c < 0 and since a > 0, Equation (7) admits at most two solutions where only one of them is non-negative (I*) and that 
can be considered here due to proposition 1.

Now If R < 1 then c > 0 and since a > 0, Equation (7) admits at most two solutions having the same sign. But if R < 1 then b > 0 
then both solutions of (7) are negative and then it can’t be considered here due to proposition 1.

* * * * * *( , , , , )E S V E I R  with * * * * * *( , , , , )E S V E I R . 
Note that * * *, ,S V E  and R*  can be expressed on I*

Proof. I proved in Proposition 1 that 1  is a positive invariant attractor set of all solution of system (1). Now, since 0S t  for  
S t S then liminf S t S . 

V V
V

p S
V t p S D m V D m V

D m
 for all t T .

For a positive constant 0 , and for a given initial condition, there exists 0T  such that S t S  for all t T .

One obtains therefore liminf
V

p S
V t

D m
0  and so liminf

V

pSV t V
D m . 

Corollary 1: 5
2 , , , ,   /  ; ,in

DS V E I R S V E I R S S S V V
D m

 is a positive invariant 

attractor set of all solutions of system (1). 

Proposition 3: 0  if and only if S VD m D m . 

From Equation (3), I obtain the following result. 

2  and we are interested in the asymptotic behavior of 
these solutions. It is enough to restrict the study of the asymptotic behaviour of system (1) to 2 . In fact the asymptotic behaviour 
of the solutions of the restriction of (1) on 2   will be informative for the complete system.

2

2
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I E s V

s V V
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(9)0 .VD m t

VV

p S p S
V t V e

D m D m



Annex Publishers | www.annexpublishers.com                    
 

Volume 3 | Issue 1

                     Journal of Computational Systems Biology
 
7

R

if and only if V S V SD m p D m D m D m p  which equivalent to S Vp D m D m p
completes the proof. 

Proof. 

Proof. , , , ,S V E I R  is given by:

 E  exists always and it is unique. If  R < 1, then the disease-free equilibrium point E  is 
locally asymptotically stable and it is unstable if R > 1. 

E  is then given by: 

where the characteristic polynomial is given by 

J 321 0, 0, 0RVSüüü
. the other two eigenvalues are those of the following sub-matrix 

It clear that the roots of P have negative real parts if and only if R < 1. It follows that the disease-free equilibrium E  is locally 
asymptotically stable whenever R < 1 and unstable when R > 1

E  is given in the following theorem (cf. ([5]).

 If 1 , then the disease-free equilibrium E  is globally asymptotically stable. If R > 1, then the disease-free equilibrium 
E  is unstable. 

0
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Proof. Consider the following Lyapunov function: 

with Lyapunov derivative, 

Since all parameters of the model are non-negative, it follows that  0F  for 1  with F = 0  only if I = 0. Hence, F is a Lyapunov 
function on 2 . Further, by Corollary 1, 2 is a compact, absorbing subset of 5 , and the largest compact invariant set in 

2üüüS V E I R F  is the singleton E
3.1] and for other application), every solution of system (1) with initial conditions in 5  converges to E   as t  [11,15]. 

E* is given in the following theorem. 

Proof. Consider the following Lyapunov function: 

 If R > 1, then the disease-persistence equilibrium * * * * * *, , , ,E S V E I R  is globally asymptotically stable. If 1
, then the disease-persistence equilibrium E* is unstable. 

V(t), along solutions of system (1) is given by

E*  V(t) admits its minimum value 
* * * *

min
ED mS V E I  when * * * *, , ,S S V V E E I I , and t  at the boundary of the 

positive quadrant. Consequently,  E*is the global minimum point, and the function is bounded from below.

EF E D m I

1

1    sin    ,

E

IEE

E I

E I

E I
E I

E I
E I

E

F E D m I

S V I D m E D m E D m I

S V I D m D m I

üüü

S V
D m D m I

D m D m

S V
D m D m I ce S S V V

D m D m

D m 21 ,  , , , , .ID m I S V E I R

*** *
*** *ln ln ln lnED m IEVSS S V V E E I I

IEVS

* * * *

**

**

*

1 1 1 1

1   1

11

E

in s V

E
IE

in s in s

D mS V E IS V E I
S V E I

VS D S S m p S IS pS D m V IV
VS

D m IE I S V D m E E D m I
IE

SDS D m S DS D m S
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* * *
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* * *

*
*

_

.

VV E

EE
EI I

pS IS

EVD m V pS D m V IV I S V D m E
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Using the fact that * * * * *, , , ,S V E I R  is solution of system 7) then the expression of  V reduces to 

Since arithmetical mean of nonnegative real numbers is greater than the geometrical one, we have the following inequalities 

I recall also the following inequality : 

More simply,

Note that 

and 

2

2
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* * * * * * * *
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S
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* * * * *
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* * * *
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*

*

* *

* *
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* * *

* * * *
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4 0.

S S
S S

S V V S
S V V S

S I S E E I
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V S I V E E I S
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Using to the above relations, one obtains the following implications.

Finally, I obtain 

Since in the endemic equilibrium, I have 

0 * * * * * *, , , ,E S V E I R  is stable. It remains to 
show that  * * * * * *, , , ,E S V E I R
and for other application).

*
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Let * *

E Ir
E I

, then *E rE  and *I rI .

For the endemic equilibrium, I get 

{ , , , , | 0}S V E I R  is * * * * * *, , , ,E S V E I R
disease-persistence equilibrium * * * * * *, , , ,E S V E I R  follows according to the Lasalle invariance principle (see for an application) 
[11,16]. 

and therefore I = I* and E = E*. Finally

Consider the case where the dilution rate is large enough compared to the natural mortality rates of all individuals which is the 
, , ,S V E Im m m m  and mR, one obtains:

Corollary 2:

5
3 , , , ,   /  ; ,in in

in
DS pSS V E I R S V E I R S S V
D p D p

 is a positive invariant attractor set

of all solutions of system (1). 

1 , then the disease-persistence equilibrium E* is unstable and the disease-free equilibrium E   is globally asymptotically 
stable. 

R > 1, then the disease-persistence equilibrium  * * * * * *, , , ,E S V E I R  is globally asymptotically stable and the disease-free 

equilibrium üüüin inDS pSE
D p D p

 is unstable. 

We performed numerical simulations for system (1). Four cases were considered. Two of them performing the global stability of 
the disease-free equilibrium E  when 1

* * * * * *, , , ,E S V E I R when R > 1(Figure 2 and 3) [17-23].

* * *

* * * *

* * * *

**

,
,

,

.

in S

V

E

I

DS D m p S S I
üüü

I S V D m E

E D m I

* * * *, 1VpS D m V V I r

* * * * *, , , , 0 , , , , .S V E I R S S V V E E I I R R

Numerical Simulations

Figure 3: (S(t), V(t), E(t), I(t), R(t)
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üüüüüüüüüüüüüüüüüüüüS D m m m m m p and for (right) Sin=1;D=5;mS=1;
mV=0.1;mE=1;mI=1;mR=1;p=1;β=5;θ=0.3;ε=3;γ=1,R E . Only 
Susceptible and Vaccinated compartiments persist, the other compartments vanish (Figure 4). 

E*. All compartiments persist. 

Figure 4: (S(t), V(t), E(t), I(t), R(t)

10; 0.1; 1; 0.1; 1; 1; 1; 1; 5; 0.3; 3; 1, 2.0740 1üüüS D m m m m m p

Conclusion
A mathematical 5D dynamical system modelling an SVEIR model of infectious disease transmission in a chemostat is proposed. 

proved that if R > 1, then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if 1, then 
the disease-free equilibrium is globally asymptotically stable in 5 . 
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