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Abstract

Neural implants have revolutionized neurology and neuroscience by offering novel therapeutic avenues for neurological dis-

orders and functional restoration. However, their efficacy is often compromised by neuroinflammation, a complex and mul-

tifaceted response that adversely affects device performance and longevity. Understanding the mechanisms underlying neu-

roinflammation and its impact on neural implants are critical for developing strategies to mitigate these effects. Advances in

biocompatible biomaterials and implant technologies, informed by neuroinflammatory research, hold promise for reducing

immune reactivity and enhancing device functionality.  Machine learning and novel  signal  processing methods are two of

the most important recent advancements in software technology that have contributed to this quick progress. Application

development in neuroscience is increasing as artificial intelligence (AI) systems get more sophisticated, effective, and quick.

AI has the potential to enhance neural implant signal processing methods, such as the brain's interpretation of electrical im-

pulses. The quality of life and long-term outcomes for people with neurological disorders may improve as a result of these

important advancements in neurotechnology.
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Neuroinflammatory Responses to Implanted Neurochemical Sensing Probes

According to studies, signal quality across all implanted central nervous system (CNS) sensors can be affected to differing de-

grees by insertion damage and foreign body response across both acute (seconds to minutes) and chronic (weeks to months)

timeframes.  Numerous intervention options for  enhancing signal  sensitivity  and endurance result  from an understanding of

the biological processes at the cellular and molecular level that underlie the brain tissue response to the devices. Neurodegenera-

tive diseases characterized by neurotransmitter signaling deficiencies can be effectively investigated using neurochemical sens-

ing probes, which serve as both diagnostic tools and therapeutic platforms. However, the implantation of these biosensors often

elicits  adverse  tissue  reactions  that  disrupt  the  brain's  neurochemical  equilibrium.  Within  weeks  post-insertion,  a  glial  scar

forms around the implant, creating a physical and biochemical barrier that contributes to progressive neurodegeneration and

diminished signal  sensitivity.  This scar tissue impedes neuronal  communication by obstructing the transmission of  chemical

messengers.

Recent  studies  highlight  the  pivotal  role  of  non-neuronal  cells  in  modulating  the  post-injury  neurochemical  environment.

While astrocytes and microglia have been extensively characterized for their reactivity to implanted probes, emerging evidence

suggests  that  other  glial  subtypes—including  oligodendrocytes,  their  precursor  cells,  myelin  structures,  and  vascular  peri-

cytes—also significantly  influence this  process.  More recently,  it  was  shown that  both novel  object  recognition behavior  and

normal cortical gamma oscillations depend on astrocytic vesicular discharge [1] Furthermore, norepinephrine has been demon-

strated  to  activate  astrocytes,  which  improves  the  astroglial  network's  reaction  to  local  neural  network  activity  [2].  Another

study shown that immunodeficient mice's larger and more complex human astrocytes improved learning, activity-dependent

plasticity, and long-term potentiation [3]. During perceptional learning, microglial cells have also been shown to engage with

dendritic spines and engulf synapses [4-6]. It is unclear how the immune system's reaction to foreign bodies affects brain activi-

ty overall, but it may change how nerves operate, particularly in the reactive glial sheath region.

The foreign body response triggered by probe implantation initiates a cascade of inflammatory events. Activated immune cells

may attempt to degrade the implant within hours; if unsuccessful, fibroblasts and immune cells encapsulate the device within

weeks, leading to tissue isolation. Regardless of the technology used, the breaching of the blood−brain barrier (BBB) to insert

devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices.

The initial insertion trauma compromises the BBB, causing localized injury to parenchymal cells [7–14], capillaries, and the ex-

tracellular matrix [15–17]. Capillary damage can result in erythrocyte extravasation, platelet activation [15], and focal hemato-

ma formation [18]. BBB disruption exacerbates neuroinflammation through multiple pathways: increased oxidative stress and

mitochondrial  dysfunction,  extravasation of  inflammatory plasma proteins,  impaired local  oxygen and nutrient delivery,  mi-

croglial activation and recruitment [17–21], accumulation of neurotoxic metabolites in the parenchyma [17, 19–22]. Other ini-

tial reactions include microglia migration and activation toward the implant [23, 24, 25-27]. Additionally, local astrocytes are

activated, undergoing morphological changes and becoming hypertrophied. [28, 29, 25, 30-32]. This reactive astrogliosis fur-

ther contributes to the inflammatory milieu, establishing a feedback loop that perpetuates tissue damage and functional impair-

ment. Regardless of technology, implantable device insertion invariably ruptures distant cells and vasculature, breaks the blood-

brain barrier, tears through extracellular matrix, and punctures cell membranes. This is particularly true when insertion-related

dimpling is seen [33, 34, 35]. Examining the inflammation biochemical cascades that are started by device implantation is essen-

tial to comprehending how damage variability affects inconsistent sensor performance. Numerous conditions might cause the

original damage to result in increased inflammation : (i) breaking down the blood-brain barrier; (ii) decreasing blood flow, oxy-

genation, and the elimination of neurotoxic waste, which can result in ischemia or hypoxia; (iii) increasing pressure and me-

chanical  strain due to hemorrhage,  vasogenic edema, and device volume accommodativeness;  (iv)  surface biofouling and in-

flammatory cytokine accumulation; (v) steric inhibition of prosurvival signaling from the implant substrate.When the blood-

brain barrier is disrupted, plasma proteins that are foreign to the central nervous system (CNS) are deposited. These include al-
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bumin (40 mg/mL or approximately 55%), globulins (10 mg/mL or approximately 38%), fibrin/fibrinogen (3 mg/mL or approx-

imately 7%), thrombin, plasmin, complement, and red blood cells (hemosiderin) [36-46]. Increases in hemoglobin (due to the

breakdown of red blood cells) in the brain cause reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can

cause  secondary  injury  by  oxidizing  cell  lipids  and  proteins  [47].  For  instance,  ROS  downregulate  tight  junction  proteins,

which increases BBB permeability [48]. In parallel, the oxidative stress that results in the activation and upregulation of pro-in-

flammatory cytokines like interleukin (IL)-1β60. Overall, it has been demonstrated that device insertion and disruption of the

blood-brain barrier instantly activate neighboring microglia. Glial cells exhibit persistently high levels of proinflammatory cy-

tokines (interleukin1 and TNFα) and chemokines (monocyte chemotactic protein1, MCP1) throughout the implantation peri-

od, resulting in neuronal degeneration and demyelination [49–56].Consequently, it is probable that the long term (several week-

s)  installation  of  these  devices  will  limit  undesirable  tissue  conditions  by  employing  techniques  that  minimize  disruption  of

blood vessels. For many research, the shortand longterm consequences of reduced blood flow brought on by the implantation

of a probe or electrode must be taken into account in order to obtain useful measurements.

Biomaterial-Dependent Modulation of Neuroinflammatory Responses

The magnitude and progression of  neuroinflammatory responses to neural  implants are critically influenced by the physico-

chemical properties of the biomaterials employed. Three key material characteristics govern this immune interaction: (1) me-

chanical properties, (2) surface topography, and (3) surface chemistry. Rough surface topographies, for instance, demonstrate

increased pro-inflammatory potential due to greater surface area for protein adsorption and enhanced mechanical irritation of

surrounding parenchyma. Conversely, smooth surfaces or engineered coatings (e.g., polyethylene glycol hydrogels) have shown

efficacy in attenuating both acute neuroinflammation and chronic foreign body reactions [57].

In chronic recording applications utilizing silicon microelectrode arrays, the immediate "kill zone" of directly damaged neurons

along the insertion track appears to have minimal impact on recording fidelity (57). More consequential is the subsequent reac-

tive gliosis that dominates the peri-implant microenvironment during the critical 6-week post-implantation period. This multi-

faceted tissue response represents the CNS's attempt to stop neuronal loss, limit focal inflammatory reactions, and seal the in-

jured area [31, 58-63]. The gliotic cascade involves Angiogenesis and revascularization of the surrounding region as well as the

recruitment of astrocytes, microglia, and NG2-expressing glial precursors [60, 64, 65]. Notably, The first week after brain elec-

trode or probe implantation may see a high concentration of reactive astrocytes, microglia, and laminin-labeled vessels in the

vicinity of the implant [66-67]. This spatiotemporal progression underscores the dynamic interplay between material proper-

ties  and biological  responsesthat  ultimately  determine  implant  performance.  A study that  used implantable  hydrous  iridium

oxide microelectrodes to record extracellular pH potentiometrically revealed histological correlations and variations in the lo-

cal pH surrounding the electrode [68, 69]. There was significant variation in the pH level, pattern (biphasic alkaline-acidic and

triphasic  acidic-alkaline  acidic),  depth,  and duration of  acidosis  when these  pH detecting  devices  were  transplanted into  the

brain.  Specifically,  when  post-mortem  histology  was  used,  higher  acidity  levels  were  frequently  linked  to  larger  blood  cell

counts in the brain parenchyma [68].

Implanted Neural Electrodes as Essential Tools for Neural Signal Recording and Their Neuroinflammatory
Consequences

High-density wire microelectrode arrays (MEAs) are indispensable miniature tools for recording neural activity at single-cell

and sub-millisecond resolution, and they constitute a primary data source for dissecting neural circuit function. Beyond funda-

mental neuroscience, these devices underpin emerging clinical technologies such as brain–computer interfaces [70] and neu-

ro-prosthetic systems [71], and they are under active investigation for the treatment of intractable neurological disorders [72,

73].
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However, the implantation of MEAs triggers a cascade of adverse effects, beginning with disruption of the blood-brain barrier

(BBB) [74]. This breach exposes the brain parenchyma to blood-derived substances that are normally excluded, thereby initiat-

ing  an  acute  immune  response  characterized  by  rapid  activation  of  astrocytes  and  microglia  [75].  Over  time,  this  response

evolves  into chronic  neuroinflammation.  Reactive  microglia  and hypertrophic  astrocytes  release  pro-inflammatory cytokines

and  reactive  oxygen  species,  ultimately  leading  to  neurite  retraction,  neuronal  apoptosis,  and  the  formation  of  a  dense  glial

sheath surrounding the implant [76]. This encapsulation increases electrical impedance and attenuates both signal recording fi-

delity  and charge delivery during stimulation.  Persistent  BBB leakage can further  sustain the inflammatory milieu and allow

neurotoxic  molecules  to  accumulate  in  the  peri-implant  region,  exacerbating  neuronal  loss  and  functional  degradation  over

time.

Chronic implantation of  microelectrode arrays elicits  a  stereotyped,  multi-cellular neuro-inflammatory response that evolves

over weeks to months and ultimately compromises device performance. Across rodent and feline models, a dense sheath of re-

active astrocytes consistently envelops the probe track [77–85]. Concomitantly, microglia undergo rapid activation and accumu-

late at the interface within minutes of insertion, whereas NG2-expressing oligodendrocyte precursor cells (OPCs) are recruited

over the ensuing hours and subsequently proliferate [85–87]. The latter cells extend processes toward the implant, secrete ax-

on-growth inhibitory extracellular matrix molecules, and—unique among glia—receive bona fide synaptic input from neighbor-

ing neurons [88]. Collectively, these events culminate in the formation of a compact glial scar that is rich in hypertrophic astro-

cytes whose thickened, interdigitated membranes constitute a diffusional and electrical barrier [89, 90]. Immunohistochemical

analyses demonstrate a rapid and sustained up-regulation of glial fibrillary acidic protein (GFAP) beginning as early as three

days post-implantation and persisting for at least several months [91]. Quantitative morphometry reveals a progressive decline

in  neuronal  density  within  0–50  µm of  the  electrode  interface,  with  losses  becoming  statistically  significant  within  24  h  and

continuing to fluctuate thereafter (91). The inflammatory milieu is further amplified by activated glia that secrete pro-inflam-

matory cytokines—including tumor necrosis  factor-α (TNF-α),  interleukin-1β (IL-1β),  interleukin-6 (IL-6),  and interferon-γ

(IFN-γ)—thereby exacerbating neuronal injury and degrading recording fidelity [92]. Rigid silicon or metallic microelectrode

arrays are particularly potent inducers of a foreign-body reaction. Beyond the acute stab wound, chronic presence of the device

sustains  an inflammatory cascade characterized by persistent  astrogliosis  (GFAP+ cells)  and macrophage activation (ED1+/-

MAC-1+ cells) within a 100–230 µm radius [93]. Notably, this zone exhibits marked neuronal loss relative to stab-wound con-

trols, indicating that the continuous physical and biochemical insult of the implant, rather than the initial trauma, drives neu-

rodegeneration.  Elevated levels  of  monocyte chemoattractant protein-1 (MCP-1) and TNF-α at  the interface corroborate the

central role of prolonged cytokine signaling in mediating chronic tissue damage and functional decline. These findings unders-

core the critical need for strategies to mitigate neuroinflammatory responses while maintaining the functional integrity of neu-

ral implants.

The Impact of Mechanical Mismatch on Neuroinflammation and Strategies for Mitigation

The mechanical mismatch between rigid implants and soft brain tissue exacerbates neuroinflammation, leading to chronic tis-

sue damage.  Conventional  neural  probes with high bending stiffness  induce shear stress  upon implantation,  disrupting local

vasculature  and  promoting  glial  scar  formation.  This  fibrotic  encapsulation  acts  as  an  insulating  barrier,  elevating  electrical

impedance and increasing the physical distance between electrodes and viable neurons, ultimately degrading signal acquisition

quality. While flexible probes with reduced cross-sectional dimensions elicit attenuated immune responses, their rigid counter-

parts trigger dense glial encapsulation and a pronounced "kill zone" characterized by significant neuronal loss [94]. Recent ad-

vancements in brain-computer interface (BCI) technology have focused on minimizing mechanical mismatch and reducing the

implant footprint to mitigate tissue damage. Flexible polymer-based devices,  such as those fabricated from polyimide (PI) or

SU-8 substrates, have emerged as promising solutions. For instance, an ultrathin (1 μm) PI-based BCI device with bending stiff-

ness comparable to that of neural axons [94] demonstrated a substantial reduction in glial activation and neuronal loss com-
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pared to bulkier probes, enabling stable neural recordings for over 30 days post-implantation. Furthermore, ultraflexible nano-

electronic probes that closely match the mechanical properties of brain tissue have been shown to integrate seamlessly without

inducing glial scarring [95].

Enhancing Biocompatibility through Material and Design Optimization

Neurotoxic materials lead to cellular rot and misfortune of neurons. It has been inspected the soundness and cytotoxic impacts

of inserts made with gold (Au),  platinum (Pt),  iridium (Ir),  indium tin oxide (ITO), and titanium (Ti) in coordinate contact

with the tissue. Compared to a polystyrene tissue culture control, Au, ITO, and Ir appeared no diminish in neuronal movement

or development taking after 72 h of coordinate contact. In spite of Pt and Ti tests diminishing the number of living cells, they

were not labeled cytotoxic as over 75 % of cells remained [96]. Neural interfacing utilizing Tungsten have been utilized for a

few decades. Be that as it may, within the nearness of oxygen or other oxidizing species, tungstic particles have poisonous im-

pacts  on the neural  tissue close the implantation location.  Tungsten's  cytotoxic  impacts,  tall  Young's  modulus,  and hardness

challenge its utilize in BMIs [97,98]. Other metals, counting press, silver, copper, cadmium, manganese, lead, chromium, and

nickel, appear hoisted neurotoxic impacts, most likely through free radical species formation [99, 100]. Other than metals and

metalloids, later investigate endeavors investigated electrically conductive polymer-based microelectrode clusters [101]. These

polymers, which can be talked about assist in this survey as potential coatings to upgrade biocompatibility, incorporate polypyr-

rolen [102], poly (3,4-ethylenedioxythiophene, (PEDOTor PEDT) [57], Poly-vinyl liquor (PVA) (103,104), poly-(lactic-co-gly-

colic corrosive) (PLGA) [103], Poly-D-Lysine (105), and poly(ethylene glycol) (PEG) (106). Within the form of graphene and

carbon nanotubes (CNTs), carbon could be a promising fabric for neuro-prosthetic gadgets [107]. Graphene and CNTs have a

tall  Young's  modulus,  are not cytotoxic,  and can be utilized to record and fortify neural  movement.  They moreover advance

neuronal multiplication and attachment at the embedded location [108]. The mechanical properties permit adaptable, biocom-

patible BMI designs. Similar characteristics for silicon microelectrode inserts have been found, supporting their utilize in BMIs

just like the UEA [109]. Surface modifications and electrode coatings play a critical role in improving device biocompatibility.

For example, platinum-black (PtB) coatings significantly reduce electrochemical impedance while enhancing charge storage ca-

pacity, thereby improving signal fidelity. Additionally, optimizing implant geometry such as employing shuttle-assisted deliv-

ery systems—can minimize insertion-induced trauma [94]. A notable innovation involves a silicon shuttle with a microgroove

structure, which ensures precise implantation of flexible probes while further reducing acute tissue damage [94].

Pharmacological Strategies to Suppress Neuroinflammation

In order to reduce the foreign body reaction and encourage tissue regeneration, pharmacological methods to reduce neuroin-

flammation surrounding neural  implants concentrate on regulating the immune system. These tactics include the use of im-

munomodulators, cytokine inhibitors, corticosteroids, gene and RNA therapies, and stem cell therapies. Systemic injection of

dexamethasone (DEX), a synthetic glucocorticoid that induces pleiotropic antiinflammatory functions through cellular gluco-

corticoid receptors, was the first way to directly modulate the immune system following microelectrode implantation. DEX is

frequently used in the clinic to treat multiple sclerosis. The majority of cells, including microglia, express receptors for glucocor-

ticoids like dexamethasone [110]. Adjunctive pharmacological interventions may further enhance BCI longevity. Minocycline,

a  microglial  inhibitor,  has  been  shown  to  attenuate  TNF-α-induced  blood-brain  barrier  (BBB)  dysfunction  [92].  However,

long-term  dosing  of  minocycline  begets  an  increased  risk  of  adverse  events—including  hyperpigmentation  of  the  skin  and

other  organs  [111,  112].  Minocycline  possesses  an  increased  chance  of  serious  adverse  events  relative  to  other  tetracyclines

[113]. Thus, minocycline could be part of a multi-faceted approach to reduce initial neuroinflammation, but less risky alterna-

tive therapies are needed for chronic applications. Similarly, localized delivery of anti-inflammatory agents, such as interleuk-

in-1 (IL-1) receptor antagonists, could mitigate chronic inflammation around the implant site [114]. Targeted suppression of

pro-inflammatory cytokines, including IL-6 and TNF-α, may also reduce glial activation without compromising the brain's in-

nate ability to respond to genuine pathological threats. alpha-melanocyte stimulating hormone (Alpha-MSH) has been shown
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to inhibit both nitric oxide and pro-inflammatory cytokines produced by activated microglia—both of which are detrimental to

neuronal health [115]. Although flavopiridol stops cell cycle progression, glial activation has been found to re-enter the cell cy-

cle, as seen by the overexpression of cell-cycle components [116]. Flavopiridol was therefore thought to result in better intracor-

tical microelectrode recording performance and less glial activation. Using a knock-out mouse model, Kozai et al. showed that

caspase-1 is a suitable immunomodulatory target for enhancing long-term single-unit recordings made by intracortical micro-

electrodes inserted into mice's visual cortex [117]. According to data collected by Kozai et al., pharmaceutical therapies that tar-

get  the  inflammasome's  downstream  actors  and  components  may  result  in  more  stable  long-term  brain  recordings.  It  was

shown that employing a knockout mouse model to target monocyte chemoattractant protein1 (MCP1) reduced the inflammato-

ry response to intracortical microelectrode implantation [118]. A chemoattractant called MCP1 draws monocytes to inflamma-

tory sites, such the brain's reaction to a neural electrode. It was previously demonstrated that targeting the toll-like receptor (TL-

R)/cluster of differentiation 14 (CD14) pathways can improve both acute and chronic microelectrode performance using knock-

-out mouse models and a small-molecule inhibitor. Pattern recognition receptors are present on microglia, neurons, astrocytes,

and blood-derived macrophages present at the probe interface and detect cellular damage and blood proteins [119, 120].

Galectin-3 (Gal-3) is a multifunctional protein implicated in neuroinflammation, microglial activation, and neurodegenerative

diseases. Gal-3 is primarily secreted by activated microglia, where it modulates neuroinflammation by interacting with toll-like

receptors (TLRs) and other immune pathways, exacerbating inflammation [105]. Inhibition of Gal-3 has shown promise in re-

ducing neuroinflammation and neurodegeneration in preclinical models [121]. After investigating the effects of platinum im-

plantation on neuroinflammation, we found that our antibody SIF001 targeting Galectin-3, a key proinflammatory factor, dra-

matically  reduced  neuroinflammatory  markers  of  activated  microglia  and  astrocytes  in  mice.  When compared  to  an  isotype

control antibody, our SIF001 demonstrated significant decreases of both the scar tissue encapsulation of the platinum wire and

microhemorrhage in brain sections, and it also dramatically increased neurogenesis, implying its potential application in neural

implantation [122]. In Platinum wire insertion model, treatment with mSIF001 was able to significantly improves locomotor

function test and significantly reduced neuroinflammatory activation of microglia and astrocytes. In addition, reduction in mi-

crohemorrhage there was also statistically significant increase in number of neurons by mSF001 Ab.

Conclusion

Neuroinflammation is  a  complicated,  multidimensional  problem that  has  a  big  influence  on how well  neural  implants  work

and how long they last. Progress in the field of neural implants depends on comprehending the mechanisms underlying neu-

roinflammation and creating plans to lessen its  effects.  The performance and biocompatibility  of  neural  implants can be en-

hanced by researchers investigating new biomaterials, surface modification methods, and drug delivery systems, which will ulti-

mately improve the lives of people with neurological injuries or disorders.
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