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Abstract

Radial Basis Function Neural Network (RBFNN) has been accomplished to evaluate the effect of the different operating pa-
rameters, namely the hourly space velocity, the reaction temperature, and [CO0,: CH,] mole ratio on the conversion and for-
mation of the different components involved in the dry reforming of methane over Ni/MgO catalyst. A three-layered Feed
Forward Neural Network in conjugation with the Radial Basis Function, and an optimized topology of 3:10:1 (input neu-
rons: hidden neurons: output neurons) has been developed, trained, and tested. Moreover, the RBFNN has been employed
to elucidate such effects in the three and two dimensions and to display the location of the predicted maxima. The results
are compared to our previosuley pblished RSM results. The preeminence of ANN was indicated in the prediction capability
demostrating the R ;; & F Ratio are 0.78 - 0.99 & 17.39- 231.09 for RSM method compared to 1.00 & 9.92E+29 - 1.30E+39
for ANN method beside lower values for error analysis terms. This is due to ANN capability to approximate the non-lineari-
ty between the input and output variables.

Keywords: Modeling; RSM; ANN; quadratic models; Dry reforming of methane

Nomenclature: MDR: methane dry reforming; RSM: Response Surface Methodology ANN: Artificial Neural Network;
RBFNN: Radial Basis Function Neural Network; CO,: carbon dioxide; CH,: methane; CO: carbon monoxide H,: hydrogen;
R2,;: regression significance; Rt: coded molar ratio of CO,/ CH,; SV: coded space velocity; T: coded temperature; Y: the re-
sponse variable; Xi and Xj are the input-coded values of the variables that affect the response variable; e: represents the ran-
dom error or uncertainties between predicted and measured values; k : the number of variables; 0,B,p,,p; are the regression

constants of intercept, linear, quadratic, and interaction terms, respectively; ADC_, %: the relative error in the prediction of

max

maximum concentration max,,, %

error
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Introduction

The frequent environmental pollution often encountered from the consumption of energy derived from fossil fuels has aroused
the quest for the production of alternative and cleaner energy sources. One such alternative means of energy production is cata-
lytic methane dry reforming (MDR) whereby the two principal greenhouse gases, carbon dioxide (CO,) and methane (CH,) are

utilized for the production of hydrogen and syngas using active catalysts.

The dry reforming of methane has a dual advantage of mitigating the greenhouse effect by utilizing the two principal compo-
nents of greenhouse gases CH, and CO, as feedstocks. Hydrogen and syngas produced can be used directly as fuel or as a chemi-
cal intermediate for synthesizing value- added chemicals and synthetic fuel. Thermo-catalytic methane decomposition is a
prospective route for producing Cox-free hydrogen [1]. Hydrogen, which has been tagged as the energy of the future as being
environmentally friendly, finds wide applications in electricity generation when combined with oxygen in fuel cells so it can be
employed for powering cars, heating houses, and so on [2]. Hence, obtaining a compromise on the optimum conditions that

can maximize the hydrogen and the syngas yield has been a bone of contention to date [3].

RSM and ANN modeling are suitable approaches to solve problems in a way that fits reality [4] so they have been enormously
employed in diverse fields to investigate the various aspects of these processes as they do not need accurate expressions or the
physical meaning of the system under exploration [5]. They help determine the level of importance of the process parameters
and thus reduce the computational cost involved in simulation and sensitivity analyses [6]. RSM requires the specification of a
polynomial function where the number of terms in the polynomial function is limited to the number of experimental design
points. Selecting an appropriate polynomial equation can be tedious since each response requires an individual one. The ANN
approach is quite flexible, robust technique structured in nature, it has the ability of universal approximation for almost all
kinds of nonlinear functions, without the need for complicated equations, and can explore regions that are otherwise omitted
when using statistical approaches. It provides sensitivity analysis determining the level of importance of the process parameters
besides revealing the interactive effect of two factors on the system fitting function thus allowing the determination of the opti-
mal parameters for designing [7]. Numerous studies have been performed to scrutinize the various aspects of RSM and ANN
and to compare the significance of the models concerning different statistical parameters. In most of these works the superiori-
ty of ANN, its appropriateness, and adequacy over the RSM has been verified especially when dealing with a high degree of
non-linearity systems [8]. The supremacy of ANN supremacy over RSM has been validated in predicting permeable concrete
properties and Pavement Condition Index (PCI); its accuracy in optimizing methane yield from palm oil mill effluent and fore-
casting the mechanical performance of recycled aggregate concrete surpassed that of RSM [9-12]. Further ANN models outper-
form traditional Multiple Linear Regression (MLR) in predicting the properties of previous concrete blended with Ground
Granulated Blast-furnace Slag. Similarly, Nejad et al. (2024) observed that ANNs provide a more effective approach for predict-
ing the fatigue life of riveted joints in AA2024 aluminum alloy plates compared to analytical or numerical methods. Despite the
vast number of researches dealing with ANN application to model and analyze different systems including methane steam re-
forming, only a few articles report ANN application to MDR. The papers published by [13-18] discuss the application of ANN
to different catalytic systems not including Ni/MgO catalyst. In our previous publication [19] we studied in detail the applica-
tion of RSM to methane dry reforming using Ni/MgO catalyst. The present study highlights the evaluation of the predictive
competencies of the RSM and ANN methodologies for the formerly reported experimental data. This has been accomplished
by comparing the values of the coefficient of determination (R’), and F-Ratio besides the various error analysis parameters. Fur-
thermore, the ANN method has been utilized to illustrate the effect of input experimental parameters on the response in three

and two dimensions and to show the location of the optima.

Annex Publishers | www.annexpublishers.com Volume 1 | Issue 1



3 Journal of Nanoscience & Technology

Experimental
Preparation of Catalyst

Commercial magnesium oxide (MgO) from Fisher, Germany was calcined at 900 °C for five hours to create the magnesium
oxide support. Using aqueous Ni(NO,),.6H,0O (Fisher, Germany) with a 10 wt% loading, the Ni/MgO catalyst was prepared us-
ing the impregnation method. This was followed by drying at 110 °C and calcining in air at 550 °C for three hours.

Catalytic Activity

A homemade fixed-bed flow system apparatus was adjusted and used to test the catalytic activity of the Ni/MgO catalyst to-
ward dry reforming of methane [20]. Mass flow controllers were used to alter the CO,/CH,/Ar reaction mixture at the ratios of
1:1:4, 1:1.5:4, and 1:2:4 to produce flow rates that matched the GHSV values of 2000, 4000, and 6000 ccg 'h™, in that order. At-
mospheric pressure, and reaction temperatures of 600, 700, and 800 °C were investigated. An online quantitative gas analysis

system (HIDEN Analytical QGA, England) was used to evaluate the gaseous products. Here is the calculation for the reactants'

conversion:
CO5 conversion% = COsin = COsout X100
COQ,in
H mn ou
C H conversion% = CH,, Lout 100

Evaluation of the predictive ability of RSM and ANN Models

A brief description of RSM and ANN in addition to the selection of the suitable ANN network has been presented in Supple-
mentary data. Many approaches have been stated in the literature for evaluation of the goodness of model fitting and predic-
tion accuracy of RSM & ANN besides error analyses as presented through the application of 24 performance and error func-

tions’ equations in Tables (1S: a-d) [Supplementary data].

To make the model computationally more tractable codification of both the input and output data variables should be per-
formed to the range of -1 to 1, to eliminate the effect of the variation of natural independent variables units and ranges and to
achieve fast convergence to obtain the minimal RMSE values [21], employing the most frequently used equation seen below
(22]

actual value — mean

ded value = 1
Coded value half of the range 1]

A second-order equation of the following form has been established for the functional relationships between the coded indepen-

dent and dependent variables using the multiple regression technique:
Y = fo+ Zn 5 X + Zé_l Zn B XX+ Zn BiX? (2]
i=1 =1 j=i+1 i=1
Details of this method have been dealt with in [19, 23-27].
In the present study, the following cases have been considered

Case a: The response concentration has been employed as it is for Y in eq. [2], and for training in the case of ANN, the predict-
ed concentrations were compared with the corresponding experimental concentration values [CH,,CO,,CO,H,] The RSM qua-

dratic equations are as follows:
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For CH, conversion, CH, = 78.07 + 1.476 SV + 19.12 T + 3.34 'Rt + 5.408 SV* - 11.86 Rt’
For CO, conversion, CO, = 63.21 + 16.52 T-7.902 Rt-2.598 T Rt

For CO production, CO = 35.44 + 7.879 "T-4.649 Rt

For H, production, H, = 34.58 + 8.896 T-6.456 Rt +3.131'SV*-3.694 Rt’-1.866 T Rt

Applying the Box-Cox method to RSM reached the following transformations to represent the response Y in equation [2] for
the various components of the reaction system: (CH,)’, (CO,)’, (CO)’ (H,)’. The corresponding equations are given below [19]:

For CH, conversion, (CH,)? = 6388.0 + 233.9'SV + 2726.3 T + 470.5 Rt + 602.3 SV? - 1655.5 Rt?

For Carbon dioxide conversion, (CO,)* = 291853.0 + 188499.3T - 100008.9 Rt - 82693.3 T Rt

For Carbon monoxide formation (CO)® = 46804.6 + 23602 T 12571.7 Rt

For Hydrogen formation, (H,)® = 47007.2 + 31312.9'T - 23750.6 Rt + 7992.2'SV? - 6651.9 Rt* - 17321.9'T'Rt

Case b- The (CH,)?, (CO,)?, (CO)* & (H,)* have been employed in eq.[2] as Y and for training in the case of ANN, and the pre-
dicted results in both cases have been transformed back to the equivalent original responses to be compared with the corre-

sponding experimental ones [CH,, CO,, CO & H,].

Case c- The (CH,), (CO,), (CO)* & (H,)® have been employed in eq.[2] as Y and for training in the case of ANN, and the pre-
dicted results in both cases have been compared with the corresponding experimental (CH,)?, (CO,)?, (CO)* & (H,)>.

Results and Discussions

These above-mentioned 24 formulas in Tables (1S: a-d) (Supplementary Data) have been employed in this study for perfor-
mance evaluation and error analyses and the results are recorded in Tables (1: a-c). The performance estimation results re-
vealed that the ANN was found to be highly efficacious with superior reliability and accuracy of performance prediction as well

as fitting the target responses.

Comp_ . -
Case Average. Max1mur.n Mlnlmurp R_square RQd‘ F_ratio SD Ele.lpsed
concentration concentration concentration adj time
_Method
Exp. Pred. Exp. Pred. Exp. Pred.
CH4_
case 74.63 74.63 99.05 99.05 39.05 39.05 1 1 4.60E+30 | 1.91E-16 | 8.4454
a_NN
CH4_
case 74.63 74.63 99.05 104.07 39.05 43.76 0.9578 [0.9343 40.81 0.0578 0.0649
a_Reg
CH4_
case b_ 74.63 74.60 99.05 99.05 39.05 39.05 1 1 9.48E+35 | 1.77E-16 | 8.4726
NN
CH4_
case 74.63 74.72 99.05 99.75 39.05 39.19 0.9893 |0.9834| 159.29 0.0341 0.0349
b_Reg
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CH4_

casec_ | 5826.4 5826.4 9810.9 9810.9 1524.9 1524.9 1 1 7.53E+30 | 3.43E-16 | 8.9934
NN

CH4_
case 5826.4 5826.4 9810.9 9950.5 1524.9 1535.8 0.9917 |0.9871 | 215.73 0.0718 | 0.0649
c_Reg

CcO2_
case 63.20 63.20 86.09 86.09 28.89 28.89 1 1 2.10E+30 | 3.48E-16 | 7.6958
a_NN

CcO2_
case 63.20 63.20 86.09 90.22 28.89 41.38 0.8258 | 0.7783 17.39 0.1573 | 0.0555
a_Reg

CO2_
case b_ 63.20 63.20 86.09 86.09 28.89 28.89 1 1 1.30E+39 | 3.80E-16 | 7.9174
NN

CO2_
case 63.20 63.91 86.09 87.20 28.89 44.15 0.8456 |0.8035| 17.47 0.1664 | 0.0345
b_Reg

CcO2_
casec_ |291853.0 | 291853.0 | 638077.2 | 638077.2 | 24100.0 | 24100.0 1 1 3.00E+30 | 1.37E-15 | 7.4684
NN

CO2_
case | 291853.0|291853.0 | 638077.2 | 663054.5 | 24100.0 | 86038.2 | 0.9311 |0.9124 | 49.58 0.7446 | 0.0425
c_Reg

CO _
case 32.96 32.96 41.93 41.93 17.93 17.93 1 1 1.45E+30 | 3.81E-16 | 8.5165
a_NN

CO_

case 32.96 32.96 41.93 43.32 17.93 22.92 0.8332 |0.8054| 29.96 0.1091 | 0.0365
a_Reg

CO_

case b_ 32.96 32.96 41.93 41.93 17.93 17.93 1 1 8.97E+37 | 3.35E-16 | 8.5575
NN

CO _
case 32.96 33.26 41.93 41.29 17.93 21.99 0.9011 | 0.8846 44.88 0.0860 0.0335
b_Reg

CO _
case c_ | 40099.7 | 40099.7 | 73707.6 73707.6 5767.1 5767.1 1 1 5.26E+30 | 1.07E-15 | 8.4855
NN

CO _
case 40099.7 | 40099.7 | 73707.6 70406.6 5767.1 10630.9 | 0.8883 |0.8697 | 47.72 0.2907 | 0.0396
c_Reg

Hj—;;“ 3428 | 3428 | 4832 4832 | 1518 | 15.18 1 1 | 9.92E+29 | 5.25E-16 | 8.6338
H2_ case

A Reg | 0428 | 3428 | 4832 | 4811 | 1518 | 1740 | 09638 | 09438 4798 | 0.0617 | 00385
Hbz—;]?je 3428 | 3428 | 4832 | 4832 | 1518 | 15.18 1 1 | 5.54E+37 | 5.82E-16 | 8.6112
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HbZ_Rcee;se 34.28 34.25 48.32 48.31 15.18 13.77 0.9908 |0.9857 | 200.83 0.0354 | 0.0373
I—iZ_IfIzi\sIe 34.28 34.28 48.32 48.32 15.18 15.18 1 1 9.92E+29 | 5.25E-16 | 9.9131
H2_ case
¢ Reg 47722.1 | 47722.1 | 112818.6 | 112740.9 | 3499.3 2613.7 0.9923 |0.9880 | 231.09 0.1032 | 0.0355
Mm_NN 32.96 32.96 41.93 41.93 15.18 15.18 1.00 1.00 | 9.92E+29 | 1.77E-16 | 7.468
Max NN
B 291853 | 291853 |638077.20 | 638077.20 | 24100.00 | 24100.00 1.00 1.00 | 1.30E+39 | 1.37E-15| 9.913
Min Reg
B 32.96 32.96 41.93 41.29 15.18 13.77 0.8258 |0.7783 17.39 0.0341 | 0.0335
Max Reg
B 291853 | 291853 |638077.20 | 663054.50 | 24100.00 | 86038.20 | 0.9923 | 0.9880 | 231.09 0.7446 | 0.0649

Table (1:c): Performance and Error Evaluation of RSM and ANN Methods for Dry Reforming of CH4 Over Ni/MgO Catalyst

Similar annotations were obtained by many research groups studying various engineering problems as mentioned earlier in
this manuscript. This is conveyed in the very high values of the R* & F ratio and the exceedingly low value of error indicators
for the ANN results compared to that of RSM ones. Considering the results of the studied case a, the values of k2 ;; are (0.9343,
0.8054, 0.7783, & 0.9438) for RSM compared to the values of 1.00 in the case of ANN, and of F-ratio for RSM case (40.81, 17.39,
29.96, & 47.98) matched to (4.60E+30, 2.10E+30, 1.45E+30, & 9.92E+29) in case of ANN for CH,, O,, CO, & H, respectively,
designating the preeminence of ANN in prediction. Furthermore, the ranges of R2,;; & F-ratio in all the studied cases are 0.7783
-0.9880 & 17.39 - 231.09 for RSM method compared to 1.00 & 9.92E+29 - 1.30E+39 for ANN method. Also, in all cases studied
the max,,, % for the ANN method was less than that for the RSM method. The max.,,, % range is 2.87E-14 - 5.88E-14 for the
ANN compared to the range 3.22 - 28.20 for the RSM. The relative error in the prediction of maximum concentration AD

_
ranges from 0.0230 to 5.065 for RSM, while that for ANN lies within the range 0-4.41E-14. Furthermore, for the ANN method,
there is no remarkable difference in the values of max,,,% & AD,,% in the three studied cases, which reveals the ability of the
ANN method to establish the relation of the input variables and the response in any form. On the contrary, there is a marked

difference between case (a) and those of (b & c) cases. This indicates the importance of choosing the suitable equation form for

representing the data in the case of the RSM.

The range of RMSE cited in Table (1b) varies between 9.06E-15 - 2.16E-10 for ANN while that for RSM is 1.067- 51313.00. Th-
ese results designate that the ANN method shows a significantly better generalization prediction capacity than that of the RSM.
The superior modeling capability of ANN can be accredited to its universal approximation facility for nonlinearity, whereas

RSM is only limited to a second-order polynomial regression [7].

Comp_
Case Erav% Era,av % Ern, min Era,mux % RMSE SEP CC CEI CE2 Maxcrmr% ADcmnx %
_Method

CH4_
case 1.92E-15 | 1.24E-14 0 4.30E-14 | 1.85E-14 | 2.48E-14 1.0 1.0 1.0 |4.26E-14 | 4.30E-14
a_NN

CH4_
case -0.5759 42910 0.9082 13.45 4,257 5.705 10.9787|0.9578 | 0.9559 | 6.0344 5.0652
a_Reg
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CH4_
caseb_
NN

1.16E-14

1.16E-14

4.41E-14

1.46E-14

2.51E-16

1.0

1.0

1.0

2.87E-14 0

CH4_
case
b_Reg

-0.4356

1.8130

0.3560

11.97

2.138

2.864699

0.9947

0.9893

0.9887

5.32 0.7091

CH4_
case C_
NN

1.98E-14

2.54E-14

8.75E-14

2.01E-12

3.44E-14

1.0

1.0

1.0

3.71E-14 0

CH4_
case
c_Reg

-0.9795

3.72E+00

0.7132

25.37

261.5

2.727

0.9959

0.9917

0.9917

5.1088 1.4233

CO2_
case
a_NN

1.43E-14

2.71E-14

0.00E+00

6.15E-14

2.28E-14

3.61E-14

3.30E-14 | 1.65E-14

CcO2_
case
a_Reg

-2.044

1.03E+01

0.5731

43.265

7.206

8.86E-02

0.9088

0.8258

0.7891

14.516 4.7923

CO2_
caseb_
NN

2.78E-15

2.54E-14

0.00E+00

1.11E-13

1.81E-14

6.20E-18

3.71E-14 | 1.65E-14

CO2_
case
b_Reg

-3.468

9.2170

0.3564

52.836

6.792

0.0732

0.9194

0.8453

0.7894

17.7273 | 1.2882

CO2_
case C_
NN

7.99E-14

8.49E-14

0.00E+00

3.77E-13

2.16E-10

7.40E-14

5.47E-14 0

CO2_
case
c_Reg

-19.1813

34.7266

1.0654

257.00

51313.0

0.0613

0.9650

0.9311

0.9260

11.0685 | 3.9145

CO _
case
a_NN

3.32E-14

3.32E-14

1.81E-14

6.38E-14

1.21E-14

3.67E-14

4.24E-14 | 3.39E-14

CO _
case
a_Reg

-1.2948

6.9830

0.7767

27.78

3.104

9.416

0.9128

0.8332

0.7998

17.2641 | 3.3267

CO _
caseb_
NN

-1.27E-15

2.27E-14

9.91E-14

9.06E-15

2.26E-17

4.24E-14 | 1.69E-14

CO _
case
b_Reg

-2.106

5.4700

0.8879

22.61

2.392

7.256

0.9492

0.9009

0.8660

13.2682 | 1.5157

CO

case c__
NN

4.43E-14

6.19E-14

3.31E-13

1.82E-11

4.53E-14

3.95E-14 0

CO_
case
c_Reg

-8.462

17.5500

2.688

84.34

7271.9

18.13

0.9425

0.8883

0.8743

28.1954 | 4.4786
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H;—Igfe 428E-14 | 4.28E-14 0 8.44E-14 | 2.14E-14 | 6.24E-14 | 1 1 1 | 5.88E-14| 1.47E-14
H2_ case

A Reg | 06236 445E+00 | 0.1472 | 14.6373 | 2.116 | 6.172 |0.9818|0.9638 | 0.9625| 5.8226 | 0.4388
Pf—l\c];?e 8.07E-15 | 3.68E-14 0 1.87E-13 | 1.58E-14 | 3.32E-17 | 1 1 1 | 5.88E-14 | 4.41E-14
H2_ case

bReg | 03071 2.32E400 | 0.0230 | 9.2685 | 1.067 | 3.113 | 0.9954|0.9908  0.9910 | 3.2226 | 0.023
HCZ—ISI?\SIe 428E-14 | 4.28E-14 0 8.44F-14 | 2.14E-14 | 6.24E-14 | 1 1 1 |5.88E-14 | 1.47E-14
H2_ case

- Reg 0.5741 | 6.86E+00| 0.0689 | 253079 | 3479.5 |7.29E+00 |0.9961 | 0.9923 | 0.9922 | 6.1059 | 0.0689
Min NN

3 -1.27E-15 | 1.16E-14 | 0.00E+00 | 4.30E-14 | 9.06E-15 | 6.20E-18 | 1.00 | 1.00 | 1.00 |2.87E-14 | 0.00E+00
Max NN

< 7.99E-14 | 8.49E-14 | 1.81E-14 | 3.77E-13 | 2.16E-10 | 7.40E-14 | 1.00 | 1.00 | 1.00 |5.88E-14 | 4.41E-14
Min Reg

3 -19.18 1.813 | 00230 | 9269 | 1.067 | 0.0613 |0.9088 |0.8258 |0.7891  3.223 | 0.0230
Max Reg

< 05741 | 3473 2.688 | 257.00 |51313.00 | 1813 |0.9961 |0.9923|0.9922| 2820 | 5.065

Table (1:b): Performance and Error Evaluation of RSM and ANN Methods for Dry Reforming of CH4 Over Ni/MgO Catalyst

Table (1c) presents the relevancy factor RF which reflects the effect of the independent variables on the response. The positive

relevancy factor of RF,,,,, (0.7537-0.8940) indicates the prominent effect of the increase of temperature towards the increase of

Temp
conversion in agreement with Alsaffar [28]. Variation of [CO,:CH,4] mole ratio has a moderate effect on conversion, RF,
(-0.5470 - 0.1997) while the space velocity has a negligible value RF, (—0.0999 — 0.0767), indicating its trivial effect of space ve-
locity on the measured conversion [29]. Table (1a) discloses that the ANN method is more expensive than RSM. This is shown
in the larger elapsed time for NN (7.468 - 9.913 sec) compared to that of RSM (0.0335 - 0.0649 sec), because the ANN method

performs a series of computationally expensive functions for a single model.

Comp 2
- A B 9 RF RF RF
Case_Method X MAE MARE AAD . , RV% AFV o temp o
CH4_ case
4 NN 3.75E-29 | 9.00E-15 | 1.50E-16 | 3.40E-32 | 1.41E-15| 3.70E-16 | 2.26E-14| 1.0 0.0672 | 0.8701 | 0.1518
CH4_ case
a_Reg 2.413 2.85E+00 0.0475 | 3.12E-03 | 0.4199 0.0429 6.837 |0.9981 | 0.0687 | 0.8891 | 0.1551
CH4¥\]§356 b_ 2.86E-29 | 549E-17 | 9.15E-19 |2.93E-32 | 1.33E-15 | 1.33E-15 | 2.10E-14| 1.0 0.0672 | 0.8701 | 0.1517
CH4_ case
b_Reg 0.7253 1.16E+00 0.0193 1.08E-03 | 0.1771 0.0385 4.033 | 0.9995 | 0.0726 | 0.8806 | 0.1696
CH4_ case c_
NN 7.35E-27 | 1.23E-12 | 1.48E-16 | 1.10E-31 | 2.44E-15| 2.00E-15 | 4.06E-14| 1.0 0.0767 | 0.8940 | 0.1543
CH4_ case
c_Reg 152.8 1.27E+06 152.8 4.81E-03 | 0.3542 0.0770 8.490 ]0.9989 | 0.0770 | 0.8977 | 0.1549
CO2_ case
4 NN 9.40E-29 | 1.58E-14 | 2.77E-16 | 1.13E-31 | 2.89E-15 | 1.55E-15 | 3.76E-14 1 -0.0866 | 0.8157 | -0.3903
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C(zziec;se 1138 | 6.51E+02 | 11.38 |2.31E-02| 09746 | 0.1054 | 16.991 | 0.9910 | 0.0000 | 0.8976 | -0.4294
Cozﬁffseb— 7.95E-29 | 1.21E-18 | 2.12E-20 | 1.35E-31 | 2.52E-15 | 1.48E-16 |4.11E-14| 1 | -0.0866|0.8157 | -0.3903
CO2_ case

b Reg 1054 | 6.03E+02 | 1054 | 0.0258 | 0.8496 | 02423 | 17.968 | 0.9920 | 0.0000 | 0.8871 | -0.4084
CO2_casec_

N 2.32E-24 | 1.41E-10 | 2.30E-16 | 1.76E-30 | 8.51E-15 | 8.07E-15 | 1.49E-13 | 1 | -0.0999 | 0.8221 | -0.4362
CO2_ case

- Reg 181354.3 | 1.11E+11 | 1813543 | 0.5174 | 2.5489 | 0.7268 | 80.4232 | 0.9829 | 0.0000 | 0.8520 | -0.4520
CO _ case

NN 575E-29 | 1.02E-14 | 4.24E-16 | 1.35E-31 | 3.55E-15 | 3.55E-15 | 3.95E-14| 1 |-0.0393 | 0.8466 | 0.1727
CO _ case

 Reg 4.09E+00 | 1.98E+00 | 8.25E-02 | 0.0111 | 0.6838 | 0.0770 | 11.3209 | 0.9932 | 0.0000 | 0.9275 | 0.0000
CO _caseb_

N 3.69E-29 | 2.34E-18 | 9.76E-20 | 1.05E-31 | 2.37E-15 | -2.96E-16 | 3.48E-14| 1 |-0.0393 | 0.8466 | 0.1727
CO _ case

b Reg 2444 | 1.52E+00 | 6.31E-02 | 6.91E-03 | 05336 | 0.1779 | 8929 |0.9960, 0 |0.9202| 0
CO _casec_

N 1.72E-25 | 1.36E-11 | 2.00E-16 |1.06E-30 | 6.22E-15 | 4.44E-15 | 1.11E-13| 1 | -0.0518 | 0.8857 | 0.1997
CO _ case

 Reg 20131.6 | 4.40E+03 | 6.48E-02 |7.88E-02 | 1.6007 | 0.5338 | 30.16 |0.9787| o |09397| o0
H2_case

NN 1.20E-28 | 1.41E-14 | 4.25E-16 |2.57E-31 | 4.44E-15 | 4.44E-15 | 621E-14| 1 |-0.0328 | 0.7537 | -0.5470
H2_ case

* e 1275 | 1.35E+00 | 4.07E-02 |3.55B-03 | 0.4358 | 0.0456 | 7.2946 | 0.9979 | 0.0000 | 0.7677 | -0.5571
H2 caseb_

NN 9.44E-29 | 3.09E-18 | 9.32E-20 |3.16E-31 |3.63E-15 | 8.14E-16 | 6.89E-14| 1 |-0.0328 | 0.7537 | -0.5470
H2_ case

b Reg 0.4053 | 6.34E-01 | 1.91E-02 | 1.17E-03 | 0.2339 | -0.0367 | 4.1892 |0.9995 | 0.0000 | 0.7510 | -0.5567
H2 casec_

- 1.20E-28 | 1.41E-14 | 425E-16 |2.57E-31 | 4.44E-15 | 4.44E-15 |6.21E-14| 1 |-0.0328|0.7537 | -0.5470
H2_ case

< Teg 2702.0 | 1.92E+03 | 1.76E-02 | 9.94E-03 | 0.7017 | -0.1101 | 12.2111 |0.9977 | 0.0000 | 0.7488 | -0.5680
Min NN = | 2.86E-29 | 1.21E-18 | 2.12E-20 | 2.93E-32 | 1.33E-15 | -2.96E-16 | 2.10E-14| 1.00 |-0.0999 | 0.7537 | -0.5470
Max NN = | 2.32E-24 | 1.41E-10 | 4.25E-16 | 1.76E-30 | 8.51E-15 | 8.07E-15 | 1.49E-13 | 1.00 | 0.0767 | 0.8940 | 0.1997
MinReg= | 04053 | 0.6340 00176 | 0.0011 | 0.1771 | -0.1101 | 4.033 |0.9787 | 0.0000 | 0.7488 | -0.5680
Max Reg= | 20131.60 | 1.110E+11 | 1.814E+05 | 05174 | 2.549 | 0.7268 | 80.42 | 0.9995 | 0.0770 | 0.9397 | 0.1696

Table (1:c): Performance and Error Evaluation of RSM and ANN Methods for Dry Reforming of CH4 Over Ni/MgO Catalyst

Simulation and Optimization

The graphical presentation of results provides a simple method of optimization and identification of interactions between vari-

ables. Each curve represents infinity of combinations between two variables when the third variable is kept constant [30, 31].
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Establishing the efficiency of the neural network to predict the response concentration for the various conditions of the experi-
ments, the final optimum ANN architecture was utilized employing Matlab 9.0 for the Prediction of concentration of the vari-

ous components of the reaction system and to perform the Response Surface plots for the predicted components.

This has been accomplished by dividing each factor into 20 intervals and performing the simulation versus two coded variables
while keeping the third at zero coded value. Therefore, a total of 400 situations were evaluated. The simulation results are pre-
sented in Figure (1-4) along with the experimental data. The three-dimensional concave curved response surfaces in these fig-
ures designate the probability of obtaining a maximum value of the measured concentration within the chosen factors’ levels be-

side the interactive relationships among the factors and the response [32, 33].

The contour plots along with the experimental data of Figures (1:4b) consider the individual and cumulative influence of the
variables and the mutual interaction between the independent and dependent variables [34]. The oval shape of the contour
plots points to a significant interaction between the independent variables. The smallest ellipses in the contour plots denote the
maximum predicted values [7]. When there is no interaction between the parameters, the 3d contour plot shows a circular or
round shape [35]. The maximum concentration response and its corresponding input variables have been obtained by a grid
search investigating the simulated results exploring the region defined by the experimental design limits. Table 2 shows the
maximum predicted ANN & the previously published RSM concentration [19] together with the corresponding experimental
ones which reflect the excellent ability of ANN for prediction.

component zero space velocity zero coded temperature zero coded mole ratio
NN Exp RSM NN Exp RSM NN Exp RSM
CH, 89.948 89.948 95.629 80.899 80.899 85.175 99.05 99.050 | 99.752
CO, 86.091 86.091 87.2 76.912 76.912 80.181 80.181
CcO 39.224 39.224 41.293 38.033 38.033 41.928 41.928
H 48.32 | 48.320 | 48309 | 42906 | 42.906 | 41.621 | 44278 | 44.278 | 44.193

Table 2: Experimental and predicted Values of Maximum Responses of Various Components

CH4 Conversion as a function of coded space velocity and coded temperature
at zero coded (CO2;CH4) ratio CH4 Conversion as a function of coded space velocity and coded (CO2:CHY) ratio CH4 Conversion as a function of coded temperature and coded (CO2:CH4) ratio
2% at zero coded temperature at zero coded space velocity
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Figure (1: a): NN Surface plots for CH, conversion of methane dry reforming over Ni/MgO Catalyst
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CH4 Consersion as & function of coded space velocity and coded temperature
at zera coded (CO2:CHA) ratio
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Figure (2: b): NN Contour plots for CO2 conversion of methane dry reforming over Ni/MgO Catalyst
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Figure (3: a): NN Surface plots for CO formation of methane dry reforming over Ni/MgO Catalyst
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CO Formation as a function of coded space velocity and coded temperature
at zero coded (CO2:CH4) ratio
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Figure (3: b): NN Contour plots for CO formation of methane dry reforming over Ni/MgO Catalyst
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Figure (4: b): NN Contour plots for H2 formation of methane dry reforming over Ni/MgO Catalyst

Comparative Evaluation of RSM and ANN

The performance of RSM is easier compared to ANN and its sensitivity analysis is more precise so it is recommended for mod-

eling a new process. ANN is best suited for nonlinear systems that include interactions higher than quadratic as it has excellent

prediction and optimization abilities besides it does not require any prior specification for a suitable fitting function [7, 36]

ANN model offers little information about the contribution of the factors and their influence on the response if further analysis

has not been done. The quadratic predicting equation of RSM reveals the factor's contributions and their significance from the

coeflicients of the regression models and, therefore, can reduce the complexity of the models [37, 38]. The greater prophetic ac-

curacy of the ANN is attributed to its ability to process multi- dimensional. Non-linear, and clustered information via a multi-

-step calculation process that is reiterated until an appropriate error is attained providing better validation of new technological

strategies. RSM is restricted to the use of a second-order single-step polynomial calculation [28].
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Therefore, using RSM-ANN modeling resolves the shortcomings of RSM, and the actual association between independent and

response parameters can be studied through experimental data [39].

Conclusion

A generalized, properly fit, robust feed-forward artificial neural network model with 10 neurons using radial basic function was
successfully established, trained to utilize the data from the experimental laboratory, tested to predict the responses of the vari-
ous components comprising the reaction system, and compared to RSM. The study indicated that the properly trained ANN
model has consistently performed more accurate prediction in all aspects compared to those of RSM expressed in the very high
values of R* and F ratios and the very low value of error indicators for the ANN results compared to RSM ones despite the small
number of training data available. A simulation process was performed within the studied input variables and the results have
been portrayed in three and two dimensions together with the predicted responses of the various components and maximum
along with the experimental data. The predicted maximum of the various components was in very good agreement with the ex-
perimental ones. The study revealed the prominent effect of the increase of temperature towards the increase conversion
whereas the variation of (CO,:CH,) mole ratio has moderate effect while the space velocity has a negligible effect. It could be
concluded that ANN modeling is more appropriate in predicting the output response than empirical modeling so it can be

used to economize material and time in designs.
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