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Abstract

Plasmodium parasites, which cause malaria, continue to pose a serious threat to global health, necessitating the continuous

search for novel antimalarial agents. Entada africana is a plant known for its ethnomedicinal uses in treating various ailments as-

sociated with inflammation including malaria.  Due to its  reported antiplasmodial  potentials,  we studied the effect  of  the

methanol bark extract of the plant. HPLC chromatogram of the methanol bark extract showed the presence of eight phyto-com-

pounds namely coumaric acid, gallic acid, catechin, ferulic acid, quercetin, apigenin, rutin, and kaemferol. Thus, the study aimed

at evaluating the antiplasmodial potential of methanol bark extract of Entada africana (MBEEA) through heme polymerase inhi-

bition via in silico approaches. The in silico studies showed favourable binding affinities and stable interactions with heme poly-

merase, with rutin (-9.9 kcal/mol), apigenin (-8.0 kcal/mol) and catechin (-7.8 kcal/mol) having higher binding affinities com-

pared to the standard drug, chloroquine (-6.7 kcal/mol). Hydrogen bond analysis reveals that ferulic acid (Asp 77, Ile 73 and Ala

29) and kaemferol (Arg 40, Arg 27 and Leu 74) form three hydrogen bonds. On the other hand, compounds like coumaric acid

(Ala 291 and Arg 27), gallic acid (Ala 29 and Ser 76), catechin (Arg 40 and Arg 40), and quercetin (Ser 76 and Ser 76) form two

hydrogen bonds with the amino acid residues, rutin forms two hydrogen bonds with Ser 76 and Leu 74, while apigenin forms

one hydrogen bond with Arg 27 when compared to the standard drug, chloroquine (-6.7 kcal/mol) which forms no hydrogen

bonds with the amino acid residues. Based on their pharmacokinetic characteristics, safety profiles, and appropriate drug-like

ability, seven compounds were shown to have antiplasmodial properties by computational ADMET tests.

Keywords: Anti-plasmodial potential, binding affinities, chloroquine, heme polymerase inhibition, in silico studies, MBEEA, phy-

to-compounds
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Introduction

Malaria has afflicted humanity for centuries, persisting as one of the most severe parasitic infectious diseases globally. Endemic to

85 countries and territories, malaria's toll is staggering, with 241 million cases and 627,000 deaths reported by the World Health

Organization  (WHO)  in  2020,  marking  a  concerning  rise  from  2019  [11].  Particularly  devastating  in  impoverished  regions,

malaria,  caused  by  Plasmodium  spp.,  predominantly  Plasmodium  falciparum  and  Plasmodium  vivax,  spreads  via  infected

Anopheles mosquitoes (24; 2). Following transmission, the parasite invades hepatocytes, proliferates within red blood cells, and

triggers clinical symptoms, including fever, upon erythrocyte rupture [20, 27].

Despite numerous antiplasmodial agents, drug resistance poses a formidable challenge, especially in Africa, where favourable cli-

matic  conditions  facilitate  malaria  transmission.  WHO reported 405,000 malaria-related deaths  in  2019,  significantly  impacting

Africa's economy, with Nigeria alone contributing to over 23% of global cases [25]. In response, many Africans turn to indigenous

remedies due to cost and accessibility concerns, highlighting the urgent need for alternative treatments.

Heme polymerase, an enzyme crucial for Plasmodium species' defense against heme toxicity, is a promising target for antimalarial

intervention. Chloroquine, among other drugs, inhibits this enzyme's activity, emphasizing its therapeutic potential. Entada afri-

cana, a medicinal plant native to several African countries, including Nigeria, boasts traditional uses in treating inflammatory ail-

ments, including malaria [12]. Notably, its methanol extract exhibits antioxidant, antimicrobial, anti-inflammatory, and antiplas-

modial properties [7, 14, 15, 19].

This study aims to screen phytochemicals isolated from Entada africana's methanol bark extract via HPLC and evaluate their inter-

actions with the parasite's heme polymerase using computational methods, including molecular docking, hydrogen bond analysis,

3D interaction mapping, and pharmacophore modeling. By identifying potential lead compounds that inhibit heme polymerase,

this research seeks to disrupt hemozoin formation, thereby impairing the parasite's survival post-erythrocyte degradation. Leverag-

ing in silico approaches in drug discovery and natural product research emerged as a valuable strategy in recent years [21].

Materials

Collection of Plant Materials and Authentication

Barks of Entada africana (Fabaceae) plant were collected from a local farm in Iwaro-Oka, Akoko South West Local Government

Area. Latitude 7.278PN and longitude 5.1167oE, Ondo State, Nigeria. The plant materials were then identified by Dr. O. Obembe,

and authenticated at Plant Science and Biotechnology Departmental Herbarium (PSBH), Adekunle Ajasin University, Akung-

ba-Akoko, Ondo State, Nigeria. Plant voucher specimen designated as PSB-479 for the Entada africana. A bark sample was later

deposited at the Herbarium.

Preparation of Methanol Bark Extract of Entada Africana

Fresh barks of Entada africana were harvested, stored and washed properly to remove debris and dust particles. The plant mate-

rials were air dried at room temperature for 3 weeks and grinded to fine powder using electric blender. The ground particles were

soaked in aqueous methanol (1:4 w/v) for 72 hours with intermittent stirring after which it was filtered. The crude extract is con-

centrated under reduced pressure using rotary evaporator to remove the methanol solvent. This results in a thick, concentrated

crude extract.
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HPLC analysis

Sample Preparation for HPLC analysis

The Reversed phase chromatography HPLC system (Agilent Technologies 1200 HPLC, CA, USA), consisted of a horizontal flow-

through planar centrifuge with a multilayer coil,  a pump (JASCO, 880-PU), a microflow pH sensor (Broadley-James, Model 14,

CA, USA), a manual injection valve with a 10 ml loop, and a fraction collector (JASCO, SF-212N). The upper phase, consisting of

Hypersil BDS C18 (Agilent), was used as the stationary phase, while the lower phase was as the mobile phase. 100 mg of the plant ex-

tract (MBEEA) was taken into a conical flask and dissolved in 5 ml of HPLC grade methanol, a mixture of the stationary phase: mo-

bile phase (3:1 v/v), and introduced through the injection port. The mobile phase which constitute of 0.1% formic acid + acetoni-

trile was pumped at 0.6 ml/min. A multi-wavelength detector (Waters, 490E) monitored the absorbance of the effluent at 280 nm.

HPLC was performed according to the following chromatographic conditions as illustrated in Table 2.1.

Table 2.1: HPLC chromatographic conditions

Parameters Settings

Agilent Technologies 1200 HPLC Reversed phase chromatography

Mobile phase composition 0.1% formic acid + Acetonitrile

Stationary phase Hypersil BDS C
18
 (Agilent)

Column Dimension 250mm x 4.0 mm

Flow rate 0.6 ml/min

Injection volume 10 µL

Detector wave length 280 nm

Mode of elution Gradient elution

Ligand and Protein Preparation

The structure data file (sdf) format of eight (8) compounds from Entada africana gotten from HPLC analysis were downloaded

from pubchem database (https://pubchem.ncbi.nlm.nih.gov) in sdf and imported into the workspace of Schrödinger suite inter-

face (2017v1). The Ligprep tool of Schrödinger suite (2017v1) software were used to prepare the ligand for docking by optimizing

their 3D structure and generating multiple conformers (shapes) for each compounds. This preparation process followed the

method described by Omoboyowa et al. (16) which is a published protocol for preparing compounds for molecular docking.

Homology Modelling of Heme Polymerase and the Template Sequence Alignment

The experimental crystal structure of heme polymerase is not available in the protein data bank (PDB); hence, its 3D structure was

modelled. The protein ID of the target, heme polymerase was retrieved from UniProt Knowledgebase (UniProtKB) with the acces-

sion number P09601. Afterwards, the protein ID was submitted to SWISS-MODEL25 web server to develop a model with suffi-

cient query sequence coverage and sequence identity. The most reliable 3D structure was selected based on the Global Model Qual-

ity Estimation (GMQE) 26 and Qualitative Model Energy Analysis (QMEAN) 27 values. The similarity identity sequence between

the amino acid sequences of the homology model of heme polymerase and the template structure (3 CYV) used for the homology

model were confirmed using Clustal Omega version 1.2.1.29.
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Hits Virtually Screening with E-Pharmacophore Model

The  ligand  (chloroquine)  was  used  to  generate  an  energy-optimized  pharmacophore  model  which  serves  as  a  blueprint  of  the

chemical features a molecule needs to bind to the crystal structure of heme polymerase. The model was generated from protein-li-

gand option of the phase develop pharmacophore tool of Schrödinger Suite (2017v1) [16]. The virtual screening base on E-pharma-

cophore was performed with the eight (8) hit compounds from the molecular docking scores. The hit compounds were prepared

using  Macro  Model  Minimization  to  optimize  their  3D  structure  and  the  pharmacophore-based  analysis  was  carried  out  with

Phase module to generate a subset of molecules having chemical features for binding to heme polymerase according to the generat-

ed model. The fitness scores were used to justify the best hits.

Generation of QSAR Model

The FASTA sequence of the experimental inhibitory datasets for heme polymerase was downloaded from (www.ebi.ac.uk/chem-

bl). Bioactive compounds with inhibitory activities against the target were obtained with their pIC50, these datasets were converted

to SDF format using Data-warrior, version 2 [16]. The SDF file was uploaded on the workspace of Maestro - Schrödinger Suite

(2017v1) and prepared using Macro Model Minimization. Base on the pIC50 of the corresponding active compounds, the quantita-

tive structural activity relationship (QSAR) model of the target was generated. The top predicting ranked model (kpls_molprint-

2D_3) was selected. This model was utilized in predicting the pIC50 of the eight (8) hits from the molecular docking study.

Molecular Docking Analysis

Eight (8) phytocompounds namely; coumaric acid, gallic acid, catechin, ferulic acid, quercetin, apigenin. rutin and kaemferol were

identified and screened by optimizing geometry and generating PDBQT files. The protein target (heme polymerase) was prepared

by removing water and ions. Then, the resulting collection of potential ligands was docked into the heme polymerase. Hydrogen

atoms were added to all proteins, and partial atomic charges were calculated setting up the docking run by selecting the protein tar-

get and phytochemical library, defining docking parameters such as grid size and energy range using AutoDock Vina in PyRx 30.8

(virtual screening tools). Initially, flexible-ligand docking was done. The grid box size was set to 35 × 35 × 35 points with a spacing

of 0.375 Å. For the calculation, 150 runs of the Lamarckian genetic algorithm (LGA) with 25 000 000 evaluations and 270 000 gen-

erations were performed.

Pharmacokinetics and Drug-Likeness Study (ADME/Tox)

The drug-likeness properties, pharmacokinetic profiles and Lipinski’s violation analysis of the hits from E. africana were predicted

with QIKPROP tool of Schrödinger Suite (2017v1) [17].

Statistical Analysis

The data was presented as mean ± SEM. A one-way ANOVA followed by Tukey’s test were used to analyze the significant differ-

ence, where p ≤ 0.05 was presented as statistical difference.

Software

In this study, Schrödinger software (2017v1), Data-warrior, version 2 and Clustal Omega version 1.2.1.29 were used as the compu-

tational tools.
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Results

Figure 3.1: HPLC chromatogram of Entada africana showing various peaks of flavonoid rich compounds at a wave-

length of 280 nm

Figure 3.2: Binding affinities of the active compounds from Entada africana against heme polymerase viz: 2719 - Chloro-

quine; 323–Coumaric acid; 370 – Gallic acid; 9064 - Catechin; 445858–Ferulic acid; 5280343 - Quercetin; 5280443 - Api-

genin; 5280805–Rutin; 5280863 – Kaemferol

Table 3.1 provides information about the number of hydrogen bonds formed between each of the docked pocket complexes and

specific amino acids residues in the protein target. Hydrogen bond analysis reveals that rutin forms two hydrogen bonds with Ser

76 and Leu 74, while apigenin forms one hydrogen bond with Arg 27. Rutin (-9.9 kcal/mol) has a high binding energy in compari-

son to the standard drug,  chloroquine (-6.7 kcal/mol)  (Figure 4.7)  which form no hydrogen bond with the amino acid residues

(Table 4.2) due to the presence of the overall binding affinity. Similarly, ferulic acid (Asp 77, Ile 73 and Ala 29) and kaemferol (Arg
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40, Arg 27 and Leu 74) form three hydrogen bonds. On the other hand, compounds like coumaric acid (Ala 291 and Arg 27), gallic

acid (Ala 29 and Ser 76), catechin (Arg 40 and Arg 40) and quercetin (Ser 76 and Ser 76) form two hydrogen bonds with the amino

acid residues.

Chloroquine’s inability to form a hydrogen bond may depend on the accuracy of the simulation parameters, force fields, and com-

putational methods used. If these parameters are not well-suited for chloroquine or if there are limitations in the simulation condi-

tions, the results may not accurately reflect the molecule's behavior.

Table 3.1: Hydrogen bond interaction of compounds with heme polymerase

Compounds Compound Name No of H-bond Interacting residues (distance Å)

2719 Chloroquine Nil Nil

323 Coumaric acid 2 ALA 291 (2.08Å); ARG 27 (2.81 Å)

370 Gallic acid 2 ALA 29 (2.17Å); SER 76 (2.87 Å)

9064 Catechin 2 ARG 40 (6.42 Å); ARG 40 (2.37Å)

445858 Ferulic acid 3 ASP 77 (1.96 Å) ILE 73 (2.91) ALA 29 (2.96)

5280343 Quercetin 2 SER 76 (2.85 Å); SER 76 (2.81 Å)

5280443 Apigenin 1 ARG 27 (2.43 Å)

5280805 Rutin 2 SER 76 (2.92 Å); LEU 74 (2.77 Å)

5280863 Kaemferol 3 ARG 40 (2.96 Å); ARG 27 (2.85 Å); LEU 74 (2.62 Å)

3D Interaction

The  interactions  of  compounds  with  the  highest  binding  affinity  with  the  active  site  amino  acids  of  the  targets,  Coumaric  acid

(323),  Gallic  acid  (370),  Chloroquine  (2719),  Catechin (9064),  Ferulic  acid  (445858),  Quercetin  (5280343),  Apigenin (5280443),

Rutin (5280805), and Kaemferol (5280863) diagrams were analyzed to identify the specific ligand binding site to heme polymerase

(Figure 3.3)
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Figure 3.3: 3D representation of compounds-heme polymerase interactions viz: 323–Coumaric acid; 370 – Gallic acid;

2719 - Chloroquine; 9064 - Catechin; 445858–Ferulic acid; 5280343 - Quercetin; 5280443 - Apigenin; 5280805–Rutin;

5280863 – Kaemferol

Compounds Fitness Score via Pharmacophore Model

Fitness scores are used in quantitative structure-activity relationship studies. These scores evaluate how well a computational mod-

el predicts the biological activity of chemical compounds based on their structural features. High fitness scores indicate a better cor-

relation between predicted and observed activities.

The result of the screening indicates that three compounds from MBEEA; quercetin, apigenin, and kaempferol obtained higher fit-

ness scores (0.983) compared to other ligands (coumaric acid, gallic acid, catechin, ferulic acid and rutin) and the reference ligand,

chloroquine (0.870) as shown in Table 4.3.
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Figure 3.4: Pharmacophore hypothesis of the reference ligand (chloroquine) and the target (heme polymerase), hydro-

gen bond donor (D2; blue) and aromatic ring (R9; orange)

Table 3.2: Showing the compounds fitness score via pharmacophore model

Compound ID Compound Name Fitness Score

2719 Chloroquine 0.870

370 Gallic acid 0.459

5280343 Quercetin 0.983

5280443 Apigenin 0.983

5280863 Kaemferol 0.983

9064 Catechin 0.821

445858 Ferulic acid 0.459

Table 3.3: Predicted pIC50 for the compounds via QSAR model

Compound ID Compound Name pIC50 (µM)

2719 Chloroquine 5.245

323 Coumaric acid 4.844

370 Gallic acid 5.041

5280343 Quercetin 4.787

5280443 Apigenin 4.805

5280863 Kaemferol 4.805

9064 Catechin 4.944

4458585280805 Ferulic acid Rutin 4.8634.844

AutoQSAR modeling and pIC50 Prediction of compounds
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Table 3.4: Parameters of the predicted model

Model code S.D R
2

RMSE Q
2

kpls_radial_14 0.5483 0.5502 0.5521 0.4285

Figure 3.5: Scatter plot of pIC50 observed vs pIC50 predicted of QSAR model

Table 3.5: Predicted pIC50 for the compounds via QSAR model

Compound ID Compound Name pIC50 (µM)

2719 Chloroquine 5.245

323 Coumaric acid 4.844

370 Gallic acid 5.041

5280343 Quercetin 4.787

5280443 Apigenin 4.805

5280863 Kaemferol 4.805

9064 Catechin 4.944

4458585280805 Ferulic acid Rutin 4.8634.844

Pharmacokinetic Profile Prediction of Lead Compounds/ADMET Profiling

From Table 3.6, the result showed that the hit ligands are within the recommended range for blood/brain partition coefficient (-3.0

to 1.2)  with rutin (-4.199) as  an exception.  A blood/brain partition coefficient  value outside the recommended range,  especially

lower than -3.0, may suggest that rutin has lower permeability across the blood-brain barrier. This could be due to its molecular

structure, charge, or other physicochemical properties. The results obtained revealed that gallic acid, ferulic acid, coumaric acid,

have good QPlogHERG values ranging from (-1.396-3.845). Kaemferol, apigenin, quercetin, and chloroquine have poor QPlogHERG val-

ues and could block or inhibit hERG channels which could potentially lead to cardiac safety concerns. Only chloroquine and cou-

maric acid showed great calcium carbonate (Caco-2) cell permeability of 1525.824 nm/s and 2053.807 nm/s respectively observed

to be greater than the reference value of 25 nm/s. Apigenin (-0.043), kaemferol (-0.201) and quercetin (-0.354) have a better
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QPlogkhsa values than the reference ligand, chloroquine (0.47). Gallic acid (4.348 nm/sec) and rutin (0.259 nm/sec) were observed

with low QPPMDCK values.

Table 3.7 showed the lead compounds are subjected to a structure-based pharmacokinetic  screening using Admetlab elucidated

pharmacokinetic behaviors of lead based on established pharmacokinetic descriptors such as molecular weight (Mol. Wt), hydro-

gen bond donor (HBD), hydrogen bond acceptor (HBA), topological surface area (TPSA), and Lipinski’s rule violation (LRV).

Table 3.6: Pharmacokinetic prediction of hit molecules

Entry Name QPlog
HERG

QPP
Caco

QPlog
BB

QPP
MDCK

QPlog
khsa

Chloroquine -5.535 1525.824 0.45 2128.525 0.47

Coumaric acid -3.845 2053.807 0.013 1076.936 -0.559

Gallic acid -1.396 10.027 -1.659 4.348 -0.987

Quercetin -5.035 20 -2.352 7.21 -0.354

Apigenin -5.125 124.496 -1.411 52.038 -0.043

Kaemferol -5.14 55.32 -1.843 21.655 -0.201

Catechin -4.813 51.696 -1.91 20.125 -0.43

Ferulic acid -2.06 77.348 -1.062 39.567 -0.624

Rutin -4.597 0.921 -4.199 0.259 -1.195

Reference values: QplogHERG IC50 value for blockage of HERG K+channels (below –5); QPlogBB = -3.0 to 1.2; QPPCaco =< 25

poor, > 500 great; QPlogKhsa; binding to human serum albumin (-1.5 to +1.5), QPPMDCK: Apparent Madin-Darby ca-

nine kidney cell permeability in nm/sec.

Table 3.7: Drug likeness prediction of bioactive compounds

Entry Name Mol. Wt HBD HBA PSA LRV

Chloroquine 319.876 1.000 4.000 24.094 1

Coumaric acid 146.145 0.000 2.500 40.767 0

Gallic acid 170.121 4.000 4.250 114.846 0

Quercetin 302.240 4.000 5.250 141.943 0

Apigenin 270.241 2.000 3.750 98.950 0

Kaemferol 286.240 3.000 4.500 120.544 0

Catechin 290.272 5.000 5.450 116.168 0

Ferulic acid 194.187 2.000 3.500 81.247 0

Rutin 610.524 9.000 20.550 270.703 3

Molecular weight (Mol. Wt), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), topological surface area (TP-

SA), Lipinski’s rule violation (LRV).

Discussion

Molecular docking remains an important and established computational structural based virtual screening method employed in

drug discovery and design. It predicts potential drug targets and molecular ligand-target interactions at the atomic level [8]. In this

study, the molecular docking protocol was validated by preparation of the ligand, which is docked into the active site of the mod-
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elled target (heme polymerase). Binding affinity plays a crucial role in drug discovery and development. Drug candidates are often

designed or selected based on their high affinity for a target protein, such as an enzyme or receptor involved in a disease pathway

[9]. High-affinity binding can lead to therapeutic efficacy. In Figure 3.2, the binding affinities of the compounds of MBEEA were

compared with that of a standard antimalarial drug, chloroquine. Five of the assessed compounds bind better than the standard

(chloroquine) at the active site of the protein, heme polymerase. These compounds are rutin (-9.9 kcal/mol), apigenin (-8.0 kcal/-

mol),  catechin  (-7.8  kcal/mol),  quercetin,  and  kaempferol  (-7.6  kcal/mol)  as  compared  to  chloroquine  (-6.7  kcal/mol).  The  im-

proved binding affinities of these MBEEA compounds suggest that they have the potential to be more effective in inhibiting the ac-

tivity  of  heme  polymerase,  a  critical  enzyme  in  the  malaria  parasite's  life  cycle.  Malaria  parasites  require  heme  polymerase  for

heme detoxification, and inhibiting this enzyme can be a promising approach in antimalarial drug development [6]. To this end,

the interactions diagrams were analyzed to identify the specific molecular interactions between the top-scoring compounds and

the  binding  site  of  heme polymerase  (Figure  4.8).  The  target,  heme polymerase,  is  fast  becoming  an  integral  target  in  the  fight

against Plasmodium-borne diseases. It has been reported that the biosynthesis of malarial pigment (hemozoin) is catalyzed by

heme polymerase [4]. The compounds of MBEEA showed multiple hydrogen bonding with the target, interactions likely to be one

of the reasons the compounds bound better. Hydrogen bonding can influence the dynamics of protein-ligand interactions. They

can affect the rate at which a drug associates and dissociates from its target, influencing the duration of the drug's pharmacological

effect [22]. Table 3.1 provides information about the number of hydrogen bonds formed between each of the docked pocket com-

plexes and specific amino acid residues in the protein target. Hydrogen bond analysis reveals that rutin forms two hydrogen bonds

with SER 76 and LEU 74, while apigenin forms one hydrogen bond with ARG 27. Chloroquine forms no hydrogen bond with the

amino acid residues. Similarly, ferulic acid (ASP 77, ILE 73 and ALA 29) and kaemferol (ARG 40, ARG 27 and LEU 74) form three

hydrogen bonds. On the other hand, compounds like coumaric acid (ALA 291 and ARG 27), gallic acid (ALA 29 and SER 76), cat-

echin (ARG 40 and ARG 40) and quercetin (SER 76 and SER 76) form two hydrogen bonds with the amino acid residues. Pi-pi

stacking, pi-cation, pi-alkyl, pi-sigma, pi-anion, carbon hydrogen bond are a few examples of interactions that further stabilized

the ligands at the ligand binding domain of heme polymerase [3]. Evidently, the antimalarial potency of chloroquine has a lot to

do with its structure. The pharmacophore model is a computational representation of the essential features and constraints that a

molecule needs to possess in order to interact with a specific biological target, such as a receptor or enzyme. These features include

things like hydrogen bond donors/acceptors, hydrophobic regions, or specific functional groups, the pharmacophore model is con-

structed based on the known characteristics of the target and the expected binding interactions. The pharmacophore assessment

was employed to determine which chemical interactions were key in the potency of chloroquine. Hydrogen bond donor and aro-

matic ring were two features identified by the pharmacophore screening as shown in Figure 3.4. The identification of the hydrogen

donor feature in the pharmacophore assessment suggests that chloroquine likely forms hydrogen bonds with its target, heme poly-

merase. Hydrogen bonds are crucial for molecular recognition and binding between a drug and its target [13]. The presence of an

aromatic ring in the pharmacophore suggests that chloroquine might be involved in pi-pi stacking interactions or hydrophobic in-

teractions with its target [26]. In drug discovery and development, there are often large libraries of compounds to choose from.

The fitness score helps prioritize and rank these compounds based on their potential to be effective drug candidates [23]. The fit-

ness score is a numerical value that quantifies how well a given compound aligns with the features and constraints of the pharma-

cophore model, compounds with higher fitness scores are more likely to be selected for further testing and development. It is com-

puted through a computational algorithm that assesses how closely the properties of a compound match the requirements of the

model. Higher fitness scores indicate a better alignment, suggesting that the compound is more likely to bind effectively to the tar-

get [1]. The result of the screening indicates that three compounds from MBEEA—quercetin, apigenin, and kaempferol—obtained

higher fitness scores compared to chloroquine. In computational terms, this means that these three natural compounds from the

plant align very well with the features and constraints represented in the pharmacophore model, suggesting that they have a high

potential to interact effectively with the target as seen in Table 3.2 Structure-activity relationship (SAR) is a critical aspect of drug

development and computational chemistry, it involves studying the studying how the structural features of a compound (its chemi-

cal structure) relate to its biological activity [28].

The autoQSAR was used to assess the structure-activity relationship between the compounds of MBEEA and target; the result of
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such assessment was summarized in Table 3.4. The negative logarithm of half maximal inhibitory concentration (pIC50) of the li-

gands were also predicted (Table 3.5). pIC50 is a pharmacological term used to express the potency or concentration of a substance,

typically a drug or compound, in inhibiting or modulating a specific biological activity. The lower the pIC50 value, the more potent

the compound, as it indicates a lower concentration is required to achieve a half-maximal inhibitory effect. In the result shown in

Table 4.6, the MBEEA compounds (gallic acid, ferullic acid, catechin, p-coumaric acid, rutin, apigenin, quercetin, and kaemferol)

have pIC50 values comparable to chloroquine. In computational terms, the MBEEA compounds have pIC50 values that are in the

same range or slightly lower than chloroquine, suggesting that they are similarly or potentially more potent than chloroquine, a

known drug.  Potential  therapeutic  agents are unable to enter clinical  trials  because of  undesirable absorption,  distribution,

metabolism and excretion (ADMET) evaluations (5). Table 3.6 presents a comprehensive overview of pharmacokinetic predic-

tions for a range of molecules, including chloroquine, coumaric acid, gallic acid, quercetin, apigenin, kaempferol, catechin, ferulic

acid, and rutin. Each molecule's pharmacokinetic profile is evaluated based on various parameters: QPlogHERG, QPPCaco, QPlogBB,

QPPMDCK, and QPlogkhsa, offering insights into their potential behavior within the human body.

QPlogHERG, assesses the risk of human ether-a-go-go-related gene (hERG) inhibition. It was seen that chloroquine, Quercetin, Api-

genin and Kaemferol exhibit values below -5, indicating a potential concern for hERG inhibition. This finding is crucial as hERG

inhibition is associated with adverse cardiovascular effects. QPPCaco, is a measure of Caco-2 cell permeability, chloroquine demons-

trates high values, suggesting good absorption. Similarly, compounds, including coumaric acid and ferulic acid, also exhibit

favourable values, indicating efficient absorption across the intestinal membrane. The QPlogBB parameter evaluates blood-brain

barrier penetration. All the compounds except rutin fall within the optimal range, indicating their potential to penetrate the blood-

-brain barrier adequately. This is a significant consideration, especially for compounds intended to target the central nervous sys-

tem. QPPMDCK values, associated with permeability through Madin-Darby Canine Kidney cells. Chloroquine, coumaric acid, api-

genin, and ferulic acid are generally predicted to have high values, leaving Chloroquine and Coumaric acid with the highest values.

This suggests good permeability, emphasizing the potential for these molecules to traverse biological membranes effectively. Addi-

tionally, QPlogkhsa provides insights into binding to human serum albumin. All the compounds exhibit values close to zero (0) or

slightly negative, indicating a lower likelihood of strong binding to albumin. This is relevant as it influences the distribution and

availability of the compounds in the bloodstream. A higher binding affinity is not enough to make a compound a successful drug

candidate; as a result, the drug-likeness profiles of bioactive compounds of MBEEA were also assessed (Table 3.7). Hence, evaluat-

ing of ADME status of small molecules is important in drug discovery. In silico approach is the cheapest and fastest strategy for

screening large compounds for safety. Drug likeness is a concept required to qualitatively predict the possibility of molecules be-

coming an oral drug, describing the molecular importance of the drug’s pharmacokinetic properties in the body. The popular

Lipinski’s rule of five (ROV) is related to this concept, according to Lipinski’s ROV, an orally active drug should have the follow-

ing properties: donor hydrogen bond less than 5 (HBD <5), acceptor hydrogen bond less than 10 (HBA <10), molecular weight

less than 500 Da (MW < 500 Da), and octanol-water partition coefficient less than 5 (LogP<5). The rule states that, a drug-like

molecule must not violate more than one of the rules of five (10). The results shown on Table 3.7 revealed that, except for rutin,

which had more than five hydrogen bond donors, molecular weight greater than 500Da and hydrogen bond acceptor greater than

10, thereby violating three Lipinski’s rule, other hit compounds including the reference drug, chloroquine obeyed all the Lipinski’s

rule of five. This suggests that, all the hit compounds can be predicted as good therapeutic candidate. Overall, the top compounds

of MBEEA not only bound heme polymerase effectively but also demonstrated excellent pharmacokinetic and pharmacodynamic

signatures, necessitating the need to further subject these compounds to in vivo assay in the total elucidation of the seroclearance

potentials in the long fight against Plasmodium -borne infections.

Conclusion

The results of this study highlight the intriguing possibility of substances obtained from MBEEA as formidable contenders against

Plasmodium-borne illnesses, including malaria. It was shown by molecular docking analyses that a number of MBEEA compounds



Journal of Pharmaceutics & Drug Development 14

Annex Publishers | www.annexpublishers.com Volume 11 | Issue 1

have better binding affinities to the target protein, heme polymerase, than the common antimalarial medication, chloroquine.

Notably, rutin, apigenin, catechin, quercetin, and kaempferol showed significantly higher binding affinities, suggesting that they

can block heme polymerase, an enzyme that is vital to malaria parasite viability. Subsequent analyses of the molecular interactions

between the heme polymerase binding site and the highest-scoring compounds revealed several hydrogen bonds as well as other

stabilizing interactions. These interactions are a major factor in the compounds' increased binding affinities, which may indicate

how they can work as antimalarial drugs. Hydrogen bond donor and aromatic ring characteristics were found to be critical for the

critical chemical interactions that contribute to chloroquine's potency, as revealed by pharmacophore modelling. Contrary to

chloroquine, molecules from MBEEA showed better fitness ratings, suggesting that they may be more effective at interacting with

the target and that they had great agreement with the pharmacophore model. Furthermore, molecules from MBEEA have similar

or even greater potencies than chloroquine, according to structure-activity relationship (SAR) studies and the prediction of phar-

macological characteristics like pIC50 values. Additionally, as determined by Lipinski's rule of five, their drug-likeness profiles were

favourable. Additionally, the MBEEA compounds' favourable pharmacokinetic profiles were revealed by the assessment of ADME

(absorption, distribution, metabolism, and excretion) features, indicating their potential applicability for further development as

oral medicinal agents. Although rutin deviated from several of Lipinski's parameters, most of the hit compounds, such as the refer-

ence medication chloroquine, complied with them, suggesting that they could be effective therapeutic candidates.

This study employed a combination of molecular docking, pharmacophore modeling, and QSAR analysis, providing a comprehen-

sive understanding of the binding interactions and structural requirements for the heme polymerase inhibition ensuring relevance

and accuracy of the results.

Limitations of the Study

This study relied heavily on computational models with limited data size, potentially overlooking complex biological interactions

which may not always accurately represent real-world scenerios.
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